Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 15, 2024
Article Number 10
Number of page(s) 15
DOI https://doi.org/10.1051/ijmqe/2024008
Published online 11 June 2024
  1. G.M. Mahmoud, R.S. Hegazy, Comparison of GUM and Monte Carlo methods for the uncertainty estimation in hardness measurements, Int. J. Metrol. Qual. Eng. 8, 14 (2017) [Google Scholar]
  2. V. Ramnath, Analysis of approximations of GUM supplement 2 based non-Gaussian PDFs of measurement models with Rosenblatt Gaussian transformation mappings, Int. J. Metrol. Qual. Eng. 11, 2 (2020) [Google Scholar]
  3. F. Pavese, Corrections and input quantities in measurement models, Int. J. Metrol. Qual. Eng. 3, 155–159 (2012) [Google Scholar]
  4. H. Mezouara, L. Dlimi, A. Salih, M. Afechcar, H. Zniker, Evaluation of the measurement uncertainty of the stiffness modulus: test case of indirect tensile on cylindrical specimens, Int. J. Metrol. Qual. Eng. 12, 8 (2021) [Google Scholar]
  5. P. Bharti, Q. Yang, A.B. Forbes, Y. Koucha, UML knowledge model for measurement process including uncertainty of measurement, Int. J. Metrol. Qual. Eng. 12, 26 (2021) [Google Scholar]
  6. G. Wübbeler, M. Marschall, K. Kniel, D. Heißelmann, F. Härtig, C. Elster, GUM-compliant uncertainty evaluation using virtual experiments, Metrology 2, 114–127 (2022) [Google Scholar]
  7. L.R. Pendrill, Using measurement uncertainty in decision-making and conformity assessment, Metrologia 51, S206–S218 (2014) [Google Scholar]
  8. H. Figueiredo Junior, R.M. Moreira, P. Bastos Costa, Discontinuity measurement uncertainty evaluation using the Feeler PIG, Int. J. Metrol. Qual. Eng. 13, 15 (2022) [Google Scholar]
  9. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML, Evaluation of measurement data − Guide to the expression of uncertainty in measurement. Joint Committee for Guides in Metrology, JCGM 100: 2008, 2008. URL: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6. [Google Scholar]
  10. M. Marschall, G. Wübbeler, C. Elster, Rejection sampling for Bayesian uncertainty evaluation using the Monte Carlo techniques of GUM-S1, Metrologia 59, 15004 (2022) [Google Scholar]
  11. M. Mussatayev, M. Huang, M. Nurtas, A. Arynov, Improved calibration uncertainty assessment technique in coordinate metrology considering thermal influences (2023), Metrol. Meas. Syst. 28, 609–626 (2021) [Google Scholar]
  12. M. Dorozhovets, Uncertainty of the conversion function caused by systematic effects in measurements of input and output quantities (2023), Metrol. Meas. Syst. (2023), https://doi.org/10.24425/mms. 2023.146422 [Google Scholar]
  13. M. Wojtyła, P. Rosner, W. Płowucha, A.B. Forbes, E. Savio, A. Balsamo, Validation of the sensitivity analysis method of coordinate measurement uncertainty evaluation, Measurement 199, 111454 (2022) [Google Scholar]
  14. M. Wojtyła, P. Rosner, W. Płowucha, A. Balsamo, A. Piccato, A.B. Forbes, E. Savio, Determination of uncertainty of coordinate measurements on the basis of the formula for EL, MPE, Measurement 222, 113635 (2023) [Google Scholar]
  15. M.A. Silva, C. Amado, Á. Ribeiro, D. Loureiro, Uncertainty evaluation in time-dependent measurements, Measurement 196, 111196 (2022) [Google Scholar]
  16. X. Liu, Y. Xia, X. Rui, Uncertainty evaluation of multilateration-based geometric error measurement considering the repeatibility of positioning of the machine tool, Metrol. Meas. Syst. 49–63 (2023) [Google Scholar]
  17. DIN Deutsches Institut für Normung e.V. (September / 2018). DIN EN ISO 115530-3: Geometrische Produktspezifikation (GPS) − Verfahren zur Ermittlung der Messunsicherheit von Koordinatenmessgeräten (KMG) − Teil 3: Anwendung von kalibrierten Werkstücken oder Normalen. [Geometrical product specification (GPS) − Methods for the determination of measurement uncertainty of coordinate measuring machines (CMMs) − Part 3: Use of calibrated workpieces or standards. Deutsche Fassung EN ISO 15530–3:2011. Berlin. DIN Deutsches Institut für Normung e.V. [Google Scholar]
  18. Measurement systems analysis: MSA. reference manual (4. ed.) (Automotive Industry Action Group, 2010) [Google Scholar]
  19. S.F. Beckert, W.S. Paim, Critical analysis of the acceptance criteria used in measurement systems evaluation, Int. J. Metrol. Qual. Eng. 8, 23 (2017) [Google Scholar]
  20. M. Abdelgadir, C. Gerling, J. Dobson, Variable data measurement systems analysis: advances in gage bias and linearity referencing and acceptability, Int. J. Metrol. Qual. Eng. 11, 16 (2020) [Google Scholar]
  21. S. Belouafa, F. Habti, S. Benhar, B. Belafkih, S. Tayane, S. Hamdouch, A. Bennamara, A. Abourriche, Statistical tools and approaches to validate analytical methods: methodology and practical examples, Int. J. Metrol. Qual. Eng. 8, 9 (2017) [Google Scholar]
  22. A. Kistner, B. Schäfer, Prüfmittelmanagement. [Gage management] DGQ-Band: 13–61. Hanser, 2015. https://doi.org/44264 [Google Scholar]
  23. F.A.C. Alegria, Bias of the independently based gain and offset error in ADC testing using the histogram method, Measurement 218, 113181 (2023) [Google Scholar]
  24. P. Blecha, M. Holub, T. Marek, R. Jankovych, F. Misun, J. Smolik, M. Machalka, Capability of measurement with a touch probe on CNC machine tools, Measurement 195, 111153 (2022) [Google Scholar]
  25. DIN Deutsches Institut für Normung e.V. (2010). DIN EN ISO 4287. Geometrische Produktspezifikation (GPS) − Oberflächenbeschaffenheit: Tastschnittverfahren − Benennung, Definitionen und Kenngrößen der Oberflächenbeschaffenheit [Geometrical Product Specification (GPS) − Surface texture: Profile method − Terms, definitions and surface texture parameters] (ISO 4287:1997 + Cor 1:1998 + Cor 2:2005 + Amd 1:2009). Berlin. DIN Deutsches Institut für Normung e.V. [Google Scholar]
  26. C. Engler, A. Georgiadis, D. Lange, N. Meier, Improving the surface quality of AlMgSi1 alloy with the selection of the appropriate vibration grinding stones, J. Eng. Appl. Sci. 71 (2024) [Google Scholar]
  27. DIN Deutsches Institut für Normung e.V. (Juni / 2010).DIN EN ISO 25178-6: Geometrische Produktspezifikation (GPS) − Oberflächenbeschaffenheit: Flächenhaft − Teil 6: Klassifizierung von Methoden zur Messung der Oberflächenbeschaffenheit [Geometrical Product Specification (GPS) − Surface texture: Areal − Part 6: Classification of methods for measuring surface texture]. (ISO 25178-6:2010); Deutsche Fassung EN ISO 25178–6:2010. Berlin. DIN Deutsches Institut für Normung e.V. [Google Scholar]
  28. B. He, S. Ding, Z. Shi, A comparison between profile and areal surface roughness parameters, Metrol. Meas. Syst. (2023) [Google Scholar]
  29. A. Abdelkawy, Modelling of cutting force and surface roughness of ultrasonic-assisted drilling using artificial neural network, J. Eng. Appl. Sci. 69 (2022) [Google Scholar]
  30. DIN Deutsches Institut für Normung e.V. (Dezember / 2022). DIN EN ISO 21920-2: Geometrische Produktspezifikation (GPS) − Oberflächenbeschaffenheit: Profile − Teil 2: Begriffe und Kenngrößen für die Oberflächenbeschaffenheit [Geometrical Product Specification (GPS) − Surface texture: Profile − Part 2: Terms, definitions and surface texture parameters]. (ISO 21920-2:2021, korrigierte Fassung 2022-06); Deutsche Fassung EN ISO 21920–2:2022. Berlin. DIN Deutsches Institut für Normung e.V. [Google Scholar]
  31. DIN Deutsches Institut für Normung e.V. (Juni / 2010). DIN EN ISO 25178-6: Geometrische Produktspezifikation (GPS) − Oberflächenbeschaffenheit: Flächenhaft − Teil 6: Klassifizierung von Methoden zur Messung der Oberflächenbeschaffenheit [Geometrical Product Specification (GPS) − Surface texture: Areal − Part 6: Classification of methods for measuring surface texture. (ISO 25178-6:2010); Deutsche Fassung EN ISO 25178–6:2010. Berlin. DIN Deutsches Institut für Normung e.V. [Google Scholar]
  32. DIN Deutsches Institut für Normung e.V. (April/ 1998). DIN EN ISO 4288. Geometrische Produktspezifikation (GPS) − Oberflächenbeschaffenheit: Tastschnittverfahren − Regeln und Verfahren für die Beurteilung der Oberflächenbeschaffenheit [Geometrical Product Specification (GPS) − Surface texture: Profile method − Rules and procedures for the assessment of surface texture (ISO 4288:1996). Berlin. DIN Deutsches Institut für Normung e.V. [Google Scholar]
  33. K.-J. Conrad, Taschenbuch der Konstruktionstechnik [Pocketbook of construction technology]. 3., vollständig überarbeitete und erweiterte Auflage (Hanser (Hanser eLibrary), München, 2021) [Google Scholar]
  34. DIN Deutsches Institut für Normung e.V. (Dezember / 2022). DIN EN ISO 21920-3: Geometrische Produktspezifikation (GPS) − Oberflächenbeschaffenheit: Profile − Teil 3: Spezifikationsoperatoren [Geometrical Product Specification (GPS) − Surface texture: Profile − Part 3: Specification operators. Deutsche Fassung EN ISO 21920–3: 2022 [Google Scholar]
  35. M. Singh, Development of a portable Universal Testing Machine (UTM) compatible with 3D laser-confocal microscope for thin materials, Adv. Ind. Manuf. Eng. 4, 100069 (2022) [Google Scholar]
  36. L.C. Díaz-Pérez, M. Torralba, L. Muro, J.A. Albajez, J.A. Yagüe-Fabra, Uncertainty budget of a large-range nanopositioning platform based on Monte Carlo simulation, Measurement 208, 112469 (2023) [Google Scholar]
  37. M. Grazia Guerra, F. Lavecchia, Measurement of additively manufactured freeform artefacts: the influence of surface texture on measurements carried out with optical techniques, Measurement 209, 112540 (2023) [Google Scholar]
  38. M. Niemczewska-Wójcik, M. Madej, J. Kowalczyk, K. Piotrowska, A comparative study of the surface topography in dry and wet turning using the confocal and interferometric modes, Measurement 204, 112144 (2022) [Google Scholar]
  39. P. Podulka, W. Macek, D. Rozumek, K. Żak, R. Branco, Topography measurement methods evaluation for entire bending-fatigued fracture surfaces of specimens obtained by explosive welding, Measurement 224, 113853 (2024) [Google Scholar]
  40. L. Newton, A. Thanki, C. Bermudez, R. Artigas, A. Thompson, H. Haitjema, R. Leach, Optimisation of imaging confocal microscopy for topography measurements of metal additive surfaces, Metrology 3, 186–221 (2023) [Google Scholar]
  41. B. He, H. Zheng, S. Ding, R. Yang, Z. Shi, A review of digital filtering in evaluation of surface roughness, Metrol. Meas Syst. (2023), https://doi.org/10.24425/mms.2021.136606 [Google Scholar]
  42. Experimental study of non-measured points on surface measurement using structured illumination microscopy, Metrol. Meas. Syst. (2023). https://doi.org/10.24425/mms.2022.143071 [Google Scholar]
  43. Verein Deutscher Ingenieure, VDI-Gesellschaft Produktionstechnik (ADB), Fachbereich Fertigungsverfahren, Ausschuß Elektroerosives Bearbieten. (1975). VDI Richtlinie 3400 Elektroerosive Bearbeitung: Begriffe, Verfahren, Anwendung [Electrical Discharge Machining (EDM): Definitions, processes, application (VDI 3400). Düsseldorf. [Google Scholar]
  44. R. Fang, H. Yi, S. Wang, Y. Niu, Classification and inspection of milling surface roughness based on a broad learning system, Metrol. Meas. Syst. 483–503 (2022) [Google Scholar]
  45. VDI/VDE Verein Deutscher Ingenieure/Verband der Elektrotechnik, Elektronik und Informationstechnik. (Dezember/ 2015). VDI/VDE 2627 Part 1: Measuring rooms, classification and characteristics, planning and execution. Berlin Beuth Verlag. xx [Google Scholar]
  46. C. Engler, A. Georgiadis, D. Lange, N. Meier, Way out of the supply crises through risk minimization - metrological comparison of two polypropylene materials and examination with six sigma methods, Int. J. S Prod. Qual. Manag. (in press), DOI: 10.1504/IJPQM.2023.10060471 [Google Scholar]
  47. The American Society of Mechanical Engineers. (June/ 2020). Surface Texture (Surface Roughness, Waviness, and Lay). The American Society of Mechanical Engineers (ASME) Two Park Avenue, New York, NY 10016–5990. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.