Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 4, Number 1, 2013
Page(s) 17 - 22
DOI https://doi.org/10.1051/ijmqe/2012032
Published online 05 June 2013
  1. S.J. Ahn, E. Westkämper, W. Rauh, Orthogonal distance fitting of parametric curves and surfaces, in Algorithms for Approximation IV, edited by J. Levesley, I.J. Anderson, J.C. Mason (University of Huddersfield, 2002), pp. 122–129 [Google Scholar]
  2. G.T. Anthony, H.M. Anthony, B. Bittner, B.P. Butler, M.G. Cox, R. Drieschner, R. Elligsen, A.B. Forbes, H. Groß, S.A. Hannaby, P.M. Harris, J. Kok, Reference software for finding Chebyshev best-fit geometric elements, Precis. Eng. 19, 28–36 (1996) [CrossRef] [Google Scholar]
  3. P.T. Boggs, R.H. Byrd, R.B. Schnabel, A stable and efficient algorithm for nonlinear orthogonal distance regression, SIAM J. Sci. Statist. Comput. 8, 1052–1078 (1987) [CrossRef] [Google Scholar]
  4. K. Carr, P. Ferreira, Verification of form tolerances part I: Basic issues, flatness and straightness, Precis. Eng. 17, 131–143 (1995) [CrossRef] [Google Scholar]
  5. K. Carr, P. Ferreira, Verification of form tolerances part II: Cylindricity and straightness of a median line, Precis. Eng. 17, 144–156 (1995) [CrossRef] [Google Scholar]
  6. A.B. Forbes, Least squares best fit geometric elements, in Algorithms for Approximation II, edited by J.C. Mason, M.G. Cox (Chapman & Hall, London, 1990), pp. 311–319 [Google Scholar]
  7. A.B. Forbes, Surface fitting taking into account uncertainty structure in coordinate data, Meas. Sci. Technol. 17, 553–558 (2006) [CrossRef] [Google Scholar]
  8. A.B. Forbes, Uncertainty evaluation associated with fitting geometric surfaces to coordinate data, Metrologia 43, S282–S290 (2006) [CrossRef] [Google Scholar]
  9. A.B. Forbes, H.D. Minh, Form assessment in coordinate metrology, in Approximation Algorithms for Complex Systems, edited by E.H. Georgoulis, A. Iske, J. Levesley, Springer Proceedings in Mathematics (Springer-Verlag, Heidelberg, 2011), Vol. 3, pp. 69–90 [Google Scholar]
  10. H.-P. Helfrich, D. Zwick, 1 and Fitting of Geometric Elements (2002), pp. 162–169 [Google Scholar]
  11. X. Jiang, X. Zhang, P.J. Scott, Template matching of freeform surfaces based on orthogonal distance fitting for precision metrology, Meas. Sci. Technol. 21, 045101 (2010) [CrossRef] [Google Scholar]
  12. G. Moroni, S. Petrò, Geometric tolerance evaluation: a discussion on minimum zone fitting algorithms, Precis. Eng. 32, 232–237 (2008) [CrossRef] [Google Scholar]
  13. D. Sourlier, W. Gander, A new method and software tool for the exact solution of complex dimensional measurement problems, in Advanced Mathematical Tools in Metrology II, edited by P. Ciarlini, M.G. Cox, F. Pavese, D. Richter (World Scientific, Singapore, 1996), pp. 224–237 [Google Scholar]
  14. G.E.P. Box, G.C. Tiao, Bayesian Inference in Statistical Analysis (Wiley, New York, Wiley Classics Library, edition 1992, edition 1973) [Google Scholar]
  15. A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin, Bayesian Data Analysis, 2nd edn. (Chapman & Hall/CRC, Boca Raton, 2004) [Google Scholar]
  16. H.S. Migon, D. Gamerman, Statistical Inference: an Integrated Approach (Arnold, London, 1999) [Google Scholar]
  17. D.S. Sivia, Data Analysis: a Bayesian Tutorial (Clarendon Press, Oxford, 1996) [Google Scholar]
  18. M. Evans, N. Hastings, B. Peacock, Statistical distributions (Wiley, 2000) [Google Scholar]
  19. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: the Art of Scientific Computing (Cambridge University Press, Cambridge, 1989), www.nr.com [Google Scholar]
  20. C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (MIT Press, Cambridge, 2006) [Google Scholar]
  21. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (John Hopkins University Press, Baltimore, 1996) [Google Scholar]
  22. A.B. Forbes, Parameter estimation based on least squares methods, in Data Modeling for Metrology and Testing in Measurement Science, edited by F. Pavese, A.B. Forbes, (Birkhäuser-Boston, New York, 2009), pp. 147–176 [Google Scholar]
  23. G. Zhang, R. Ouyang, B. Lu, R. Hocken, R. Veale, A. Donmez, A displacement method for machine geometry calibration, Ann. CIRP 37, 515–518 (1988) [CrossRef] [Google Scholar]
  24. D. Gamerman, Markov chain Monte Carlo: Stochastic Simulation for Bayesian Inference (Taylor & Francis, New York, 1997) [Google Scholar]
  25. A.B. Forbes, Structured nonlinear Gauss-Markov Problems, in Algorithms for Approximation V, edited by A. Iske, J. Levesley (Springer, Berlin, 2006), pp. 167–186 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.