Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 15, 2024
Article Number 6
Number of page(s) 30
DOI https://doi.org/10.1051/ijmqe/2024003
Published online 25 April 2024
  1. S. Kline, F. Mcclintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75, 3–8 (1953) [Google Scholar]
  2. BIPM, IEC, IFCC, ILAC, ISO, IUPAP, and OIML, “Evaluationof measurement data - Guide to the expression of uncertainty in measurement, ” tech. rep., JCGM/WG1 GUM, 2008. Revised 1st edition − https://www.bipm.org/en/publications/guides/https://www.bipm.org/en/publications/guides/. [Google Scholar]
  3. V. Ramnath, Determining the covariance matrix for a nonlinear implicit multivariate measurement equation uncertainty analysis, Int. J. Metrol. Qual. Eng. 13, 1–15 (2022) [CrossRef] [EDP Sciences] [Google Scholar]
  4. P. Kang, C. Koo, H. Roh, Reversed inverse regression for the univariate linear calibration and its statistical properties derived using a new methodology, Int. J. Metrol. Qual. Eng. 8, 1–10 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  5. V. Ramnath, Comparison of straight line curve fit approaches for determining variances and covariances, Int. J. Metrol. Qual. Eng. 11, 16pp (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  6. Q. Tang, Q. Yang, X. Wang, A.B. Forbes, Pointing error compensation of electro-optical detection systems using Gaussian process regression, Int. J. Metrol. Qual. Eng. 12, 1–6 (2021) [Google Scholar]
  7. N. Habibi, A. Jalid, A. Salih, H. Hanane, Estimation of parallelism measurement uncertainty according to the geometrical product specifications standard using coordinate measuring machine, Int. J. Metrol. Qual. Eng. 14, 1–7 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  8. N. Habibi, A. Jalid, A. Salih, M.Z. Es-sadek, Perpendicularity assessment and uncertainty estimation using coordinate measuring machine, Int. J. Metrol. Qual. Eng. 14, 1–13 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  9. G.L. Bretthorst, The maximum entropy method of moments and bayesian probability theory, AIP Conf. Proc. 1553, 3–15 (2013) [CrossRef] [Google Scholar]
  10. J. Kohout, Four-parameter Weibull distribution with lower and upper limits applicable in reliability studies and materials testing, Mathematics 11, 1–23 (2023) [Google Scholar]
  11. L. Ziyu, F. Yongling, Z. Shicheng, W. Jinkun, Study on rolling bearing life based on Weibull distribution and correlation coefficient optimization and maximum likelihood estimation, J. Phys.: Conf. Ser. 2383, 1–9 (2022) [Google Scholar]
  12. A. Rezaei, A.R. Nejad, Effect of wind speed distribution and site assessment on pitch bearing loads and life, J. Phys.: Conf. Ser. 2507, 1–9 (2023) [Google Scholar]
  13. A. Possolo, C. Merkatas, O. Bodnar, Asymmetrical uncertainties, Metrologia 56, 1–9 (2019) [Google Scholar]
  14. A.B. Forbes, Approaches to evaluating measurement uncertainty, Int. J. Metrol. Qual. Eng. 3, 71–77 (2012) [CrossRef] [EDP Sciences] [Google Scholar]
  15. T. Burr, S. Croft, B.C. Reed, Least-squares fitting with errors in the response and predictor, Int. J. Metrol. Qual. Eng. 3, 117–123 (2012) [CrossRef] [EDP Sciences] [Google Scholar]
  16. K.F. Wallis, The two-piece normal, binomial, or double Gaussian distribution: its origin and rediscoveries, Stat. Sci. 29, 106–112 (2014) [Google Scholar]
  17. M. Villani. R. Larsson, The multivariate split normal distribution and asymmetric principal components analyis, Commun. Stat. − Theory Methods 35, 1123–1140 (2006) [CrossRef] [Google Scholar]
  18. A. Azzalini, A. Capitanio, Statistical applications of the multivariate skew-normal distribution, J. Royal Stat. Soc. Ser. B 61, 579–602 (1999) [CrossRef] [Google Scholar]
  19. A. Azzalini, sn: The skew-normal and related distributions such as the skew-t, tech. rep., CRAN, 2019. https://cran.r-project.org/web/packages/sn/index.html. [Google Scholar]
  20. A. Ara, F. Louzada, The multivariate alpha skew Gaussian distribution, Bull. Braz. Math. Soc.: New Series 50, 823–843 (2019) [CrossRef] [Google Scholar]
  21. R. Willink, Representating Monte Carlo output distributions for transfereability in uncertainty analysis: modelling with quantile functions, Metrologia 46, 154–166 (2009) [CrossRef] [Google Scholar]
  22. E. Acar, M. Rais-Rohani, C.D. Eamon, Reliability estimation using univariate dimension reduction and extended generalised lambda distribution, Int. J. Reliab. Saf. 4, 166–187 (2010) [CrossRef] [Google Scholar]
  23. C.G. Corlu, M. Meterelliyoz, Estimating the parameters of the generalized lambda distribution: Which method performs best? Commun. Stat. Simul. Comput. 45, 2276–2296 (2015) [Google Scholar]
  24. S. Noorian, M.N. Ahmadabadi, The use of the extended generalized lambda distribution for controlling the statistical process in individual measurements, Stat. Optim. Inf. Comput. 6, 536–546 (2018) [CrossRef] [Google Scholar]
  25. B. Wang, fitgbd: Fit extended generalized lambda distribution (EGLD/GBD), tech. rep., CRAN, 2019. https://cran.r-project.org/web/packages/gb/index.html [Google Scholar]
  26. S. Su, M. Maechler, J. Karvanen, R. King, B. Dean, Fitting single and mixture of generalised lambda distributions (GLDEX), 2022. https://cran.r-project.org/web/packages/GLDEX/index. html [Google Scholar]
  27. G. Muraleedharan, C.G. Soares, C. Lucas, Characteristic and moment generating functions of generalised extreme value distribution (GEV), in Sea Level Rise, Coastal Engineering, Shorelines and Tides, edited by L.L. Wright (Nova Science Publishers, Inc., 2009), ch. 13, 1–9 [Google Scholar]
  28. H. Klakattawi, D. Alsulami, M.A. Elaal, S. Dey, L. Baharith, A new generalized family of distributions based on combining Marshal-Olkin transformation with T-X family, PLoS ONE 17, e0263673 (2022) [Google Scholar]
  29. A. Possolo, Copulas for uncertainty analysis, Metrologia 47, 262–271 (2010) [CrossRef] [Google Scholar]
  30. J. Segers, M. Sibuya, H. Tsukahara, The empirical beta copula, J. Multivariate Anal. 155, 35–51 (2017) [CrossRef] [Google Scholar]
  31. L. Lu, S. Ghosh, Nonparametric estimation of multivariate copula using empirical Bayes methods, Mathematics 11, 4383 (2023) [Google Scholar]
  32. V. Ramnath, Numerical analysis of the accuracy of bivariate quantile distributions utilizing copulas compared to the GUM supplement 2 for oil pressure balance uncertainties, Int. J. Metrol. Qual. Eng. 8, 1–29 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  33. P.M. Harris, C.E. Matthews, M.G. Cox, Summarizing the output of a Monte Carlo method for uncertainty evaluation, Metrologia 51, 243–252 (2014) [Google Scholar]
  34. P.M. Harris, M.G. Cox, On a Monte Carlo method for measurement uncertainty evaluation and its implementation, Metrologia 51, S176–S182 (2014) [Google Scholar]
  35. I. Smith, Y. Luo, D. Hutzschenreuter, The storage within digital calibration certificates of uncertainty information obtained using a Monte Carlo method, Metrology 2, 33–45 (2022) [CrossRef] [Google Scholar]
  36. N. Armstrong, G.J. Sutton, D.B. Hibbert, Estimating probability density functions using a combined maximum entropy moments and bayesian method. theory and numerical examples, Metrologia 1–15 (2019) [Google Scholar]
  37. T.A. O'Brien, K. Kashinath, N.R. Cavanaugh, W.D. Collins, J.P. O'Brien, A fast and objective multidimensional kernel density estimation method: fastKDE, Comput. Stat. Data Anal. 101, 148–160 (2016) [CrossRef] [Google Scholar]
  38. V. Ramnath, Analysis of approximations of GUM supplement 2 based non-Gaussian PDFs of measurement models with Rosenblatt Gaussian transformation mappings, Int. J. Metrol. Qual. Eng. 11, 1–16 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  39. M.H. Khanjanpour, A.A. Javadi, Experimental and CFD analysis of impact of surface roughness on hydrodynamic performance of a Darrieus hydro (DH) turbine, Energies 13, 1–18 (2020) [Google Scholar]
  40. M. Kadivar, D. Tormey, G. McGranaghan, A review on turbulent flow over rough surfaces: fundamentals and theories, Int. J. Thermofluids 10, 100077 (2021) [CrossRef] [Google Scholar]
  41. C.F. Colebrook, Turbulent flow pipe particular reference to the transition region between the smooth and rough pipe law, J. Inst. Civil Eng. 11, 133–156 (1939) [CrossRef] [Google Scholar]
  42. T. Adams, C. Grant, H. Watson, A simple algorithm to relate measured surface roughness to equivalent sand grain roughness, Int. J. Mech. Eng. Mechatr. 1, 66–71 (2012) [Google Scholar]
  43. M.A. Shockling, J.J. Allen, A.J. Smits, Roughness effects in turbulent pipe flow, J. Fluid Mech. 564, 267–285 (2006) [CrossRef] [Google Scholar]
  44. F.R. Hama, Boundary-layer characteristics for smooth and rough surfaces, Trans Soc. Naval Archit. Mar. Engrs 62, 333–358 (1954) [Google Scholar]
  45. M.V. Zagarola, A.J. Smits, Mean-flow scaling of turbulent pipe flow, J. Fluid Mech. 373, 33–79 (1998) [CrossRef] [Google Scholar]
  46. S.E. Haaland, Simple and explicit formulas for the friction factor in turbulent pipe flow, J. Fluids Eng. 105, 89–90 (1983) [CrossRef] [Google Scholar]
  47. R.W. Jeppson, Steady flow analysis of pipe networks: an instructional manual, tech. rep., Utah State University, Utah Water Research Laboratory, January 1974. Paper 300. [Google Scholar]
  48. B.J. McKeon, M.V. Zagarola, A.J. Smits, A new friction factor relationship for fully developed pipe flow, J. Fluid Mech. 538, 429–443 (2005) [CrossRef] [Google Scholar]
  49. J.J. Allen, M.A. Shockling, G.J. Kunkel, A.J. Smits, Turbulent flow in smooth and rough pipes, Phil. Trans. R. Soc. A 365, 699–714 (2007) [CrossRef] [PubMed] [Google Scholar]
  50. N. Afzal, Friction factor directly from transitional roughness in a turbulent pipe flow, J. Fluids Eng. 129, 1255–1267 (2007) [CrossRef] [Google Scholar]
  51. Y. Wang, R.Li, l. Luo, L. Ruan, Analysis of metrological characteristics of elbow flowmeter under rotating state, Int. J. Metrol. Qual. Eng. 12, 1–9 (2021) [Google Scholar]
  52. D.A. Gace, On the performance of a coriolis mass flowmeter (CMF): experimental measurement and FSI simulation, Int. J. Metrol. Qual. Eng. 13, 1–15 (2021) [Google Scholar]
  53. U.Y. Akcadag, G.S. Sariyerli, New apparatus for the determination of liquid density at primary level in TUBITAK UME, Int. J. Metrol. Qual. Eng. 13, 1–6 (2022) [CrossRef] [EDP Sciences] [Google Scholar]
  54. BIPM, IEC, IFCC, ILAC, ISO, IUPAP, OIML, Evaluation of measurement data − Supplement 1 to the Guide to the expression of uncertainty in measurement − Propogation of distributions using a Monte Carlo method, tech. rep., JCGM/WG1 GUM Supplement 1, 2008. 1st edition − https://www.bipm.org/en/publications/guides/https://www.bipm.org/en/publications/guides/ [Google Scholar]
  55. BIPM, IEC, IFCC, ILAC, ISO, IUPAP, OIML, Evaluation of measurement data − Supplement 2 to the Guide to the expression of uncertainty in measurement − Propogation of distributions using a Monte Carlo method, tech. rep., JCGM/WG1 GUM Supplement 2, 2011. 1st edition − https://www.bipm.org/en/publications/guides/https://www.bipm.org/en/publications/guides/ [Google Scholar]
  56. V. Ramnath, Application of quantile functions for the analysis and comparison of gas pressure balance uncertainties, Int. J. Metrol. Qual. Eng., 8, p. 4 (18pp) D (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  57. M.G. Cox, The evaluation of key comparison data, Metrologia 39, 589–595 (2002) [Google Scholar]
  58. R. Willink, On revision of the guide to the expression of uncertainty in measurement: proofs of fundamental errors in Bayesian approaches, Measurement: Sensors 24, 100416 (2022) [CrossRef] [Google Scholar]
  59. R.T. Clemen, R.L. Winkler, Combining probability distributions from experts in risk analysis, Risk Anal. 19, 187–203 (1999) [Google Scholar]
  60. L.R. Mead, N. Papanicolaou, Maximum entropy in the problem of moments, J. Math. Phys. 25, 2404–2417 (1984) [CrossRef] [Google Scholar]
  61. R.A. Jahdali, S. Kortas, M. Shaikh, L. Dalcin, M. Parsani, Evaluation of next generation high order compressible fluid dynamic solver on cloud computing for complex industrial flows, Array 17, 1–17 (2023) [Google Scholar]
  62. V. Ramnath, Analysis and comparison of hyper-ellipsoidal and smallest coverage regions for multivariate Monte Carlo measurement uncertainty analysis simulation datasets, MAPAN-J. Metrol. Soc. India 1–16 (2019) [Google Scholar]
  63. L.I. Langelandsvik, G.J. Kunkel, A.J. Smits, Flow in a commercial steel pipe, J. Fluid Mech. 595, 323–339 (2008) [CrossRef] [Google Scholar]
  64. T.P. Hill, Conflations of probability distributions, Trans. Am. Math. Soc. 363, 3351–3372 (2011) [CrossRef] [Google Scholar]
  65. A.N. Spiess, C. Feig, C. Ritz, Highly accurate sigmoidal fitting of real-time PCR data by introducing a parameter for asymmetry, BMC Bioinform. 221, 1–12 (2008) [Google Scholar]
  66. P. Praks, and D. Brkic, Advanced iterative procedures for solving the implicit Colebrook equation for fluid flow friction, Adv. Civil Eng. 5451034, 1–18 (2018) [CrossRef] [Google Scholar]
  67. R.L. Burden, J.D. Faires, Numerical Analysis, 7th ed. (Brookes/Cole, 2001) [Google Scholar]
  68. E. Friedrich, D. Kretzinger, Vulnerability of wastewater infrastructure of coastal cities to sea level rise: a South African case study, Water SA 38, 755–764 (2012) [CrossRef] [Google Scholar]
  69. S. Chen, Optimal bandwidth selection for kernel density functionals estimation, J. Probab. Stat. 2015, 242683, 1–21 (2015) [CrossRef] [Google Scholar]
  70. S.-T. Chiu, Bandwidth selection for kernel density estimation, Ann. Statist. 19, 1883–1905 (1991) [Google Scholar]
  71. R. Chartrand, Numerical differentiation of noisy, nonsmooth data, ISRN Appl. Math. 11, 1–11 (2011) [CrossRef] [Google Scholar]
  72. E.L. Kosarev, E. Pantos, Optimal smoothing of noisy data by fast Fourier transform, J. Phys. E.: Sci Instru. 16, 537–543 (1983) [CrossRef] [Google Scholar]
  73. G. von Winckel, Matlab central file exchange # 4540, Legendre–Gauss quadrature weights and nodes, 2023. https://www.mathworks.com/matlabcentral/fileexchange/4540-legendre-gauss-quadrature-weights-and-nodes [Google Scholar]
  74. I. Bogaert, Iteration-free computation of Gauss-Legendre quadrature nodes and weights, SIAM J. Sci. Comput. 36, A1008–A1026 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.