Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 15, 2024
Article Number 7
Number of page(s) 9
DOI https://doi.org/10.1051/ijmqe/2024005
Published online 25 April 2024
  1. H. Li, J. Yu, Z. Chen et al., Numerical research on drag-reduction characteristics of a body of revolution based on periodic forcing, Ocean Eng. 280 (2023) [Google Scholar]
  2. G. Liu, Z. Yuan, Z. Qiu et al., A brief review of bio-inspired surface technology and application toward underwater drag reduction, Ocean Eng. 199 (2020) [Google Scholar]
  3. M. Soyler, C. Ozalp, C. Polat et al., Experimental and numerical investigation of flow structure of grooved cylinder, Ocean Eng. 264 (2022) [Google Scholar]
  4. J. Zhang, S. Yang, J. Liu, Numerical investigation of frictional drag reduction with an air layer concept on the hull of a ship, J. Hydrodyn. 32, 591–604 (2020) [CrossRef] [Google Scholar]
  5. M. Walsh, A. Lindemann, Optimization and application of riblets for turbulent drag reduction, in 22nd Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, 1984) [Google Scholar]
  6. H. Choi, P. Moin, J. Kim, Direct numerical simulation of turbulent flow over riblets, J. Fluid Mech. 255 (1993) [Google Scholar]
  7. S. Martin, B. Bhushan, Modeling and optimization of shark-inspired riblet geometries for low drag applications, J. Colloid Interface Sci. 474, 206–215 (2016) [CrossRef] [Google Scholar]
  8. D.W. Bechert, M. Bruse, W. Hage et al., Experiments on drag-reducing surfaces and their optimization with an adjustable geometry, J. Fluid Mech. 338, 59–87 (1997) [CrossRef] [Google Scholar]
  9. T. Wu, W. Chen, A. Zhao et al., A comprehensive investigation on micro-structured surfaces for underwater drag reduction, Ocean Eng. 218 (2020) [Google Scholar]
  10. J. Wang, Y. Fan, J. Ge et al., The passive control on flow and heat transfer with streamwise micro grooves, Int. Commun. Heat Mass Transfer 135 (2022) [Google Scholar]
  11. S. Kumar, K.M. Pandey, K.K. Sharma, Advances in drag-reduction methods related with boundary layer control – a review, Mater. Today Proc. 45, 6694–6701 (2021) [CrossRef] [Google Scholar]
  12. L. Zhang, X. Shan, T. Xie, Active control for wall drag reduction: methods, mechanisms and performance, IEEE Access 8, 7039–7057 (2020) [CrossRef] [Google Scholar]
  13. D. Kim, H. Lee, W. Yi et al., A bio-inspired device for drag reduction on a three-dimensional model vehicle, Bioinspir. Biomimet. 11 (2016) [Google Scholar]
  14. H.A. Abdulbari, R.M. Yunus, N.H. Abdurahman et al., Going against the flow – a review of non-additive means of drag reduction, J. Ind. Eng. Chem. 19, 27–36 (2013) [CrossRef] [Google Scholar]
  15. M.R. Abbassi, W.J. Baars, N. Hutchins et al., Skin-friction drag reduction in a high-Reynolds-number turbulent boundary layer via real-time control of large-scale structures, Int. J. Heat Fluid Flow 67, 30–41 (2017) [CrossRef] [Google Scholar]
  16. Y. Kametani, K. Fukagata, R. Orlu et al., Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number, Int. J. Heat Fluid Flow 55, 132–142 (2015) [CrossRef] [Google Scholar]
  17. S.-J. Wu, K. Ouyang, S.-W. Shiah, Robust design of microbubble drag reduction in a channel flow using the Taguchi method, Ocean Eng. 35, 856-863 (2008) [CrossRef] [Google Scholar]
  18. X. Zhao, Z. Zong, Experimental and numerical studies on the air-injection drag reduction of the ship model, Ocean Eng. 251 (2022) [Google Scholar]
  19. P.V. Skudarnov, C.X. Lin, Drag reduction by gas injection into turbulent boundary layer: density ratio effect, Int. J. Heat Fluid Flow 27, 436–444 (2006) [CrossRef] [Google Scholar]
  20. Y. Gunawan, K.T. Waskito, Determination the optimum location for microbubble drag reduction method in self propelled barge model; an experimental approach, Energy Rep. 6, 774–783 (2020) [CrossRef] [Google Scholar]
  21. Q. Gao, J. Lu, G. Zhang et al., Experimental study on bubble drag reduction by the turbulence suppression in bubble flow, Ocean Eng. 272, (2023) [Google Scholar]
  22. Y. Watanabe, H. Oyaizu, H. Satoh et al., Bubble drag in electrolytically generated microbubble swarms with bubble-vortex interactions, Int. J. Multiphase Flow 136 (2021) [Google Scholar]
  23. X. Zhao, Z. Zong, Y. Jiang et al., A numerical investigation of the mechanism of air-injection drag reduction, Appl. Ocean Res. 94 (2020) [Google Scholar]
  24. M.H. Montazeri, M.M. Alishahi, Investigation of different flow parameters on air layer drag reduction (ALDR) performance using a hybrid stability analysis and numerical solution of the two-phase flow equations, Ocean Eng. 196 (2020) [Google Scholar]
  25. H. Wang, K. Wang, G. Liu, Drag reduction by gas lubrication with bubbles, Ocean Eng. 258 (2022) [Google Scholar]
  26. J. Wang, Y. Fan, J. Ge et al., Effect of streamwise vortex induced[r1] by streamwise grooves on drag reduction and heat transfer performance, Int. J. Thermal Sci. 186 (2023) [Google Scholar]
  27. T. Liang, Y. Xu, J. Li et al., Flow structures and wall parameters on rotating riblet disks and their effects on drag reduction, Alexandria Eng. J. 61, 2673–2686 (2022) [CrossRef] [Google Scholar]
  28. Y. Gu, G. Zhao, J. Zheng et al., Experimental and numerical investigation on drag reduction of non-smooth bionic jet surface, Ocean Eng. 81, 50–57 (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.