Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 15, 2024
Article Number 8
Number of page(s) 7
DOI https://doi.org/10.1051/ijmqe/2024006
Published online 25 April 2024
  1. National Bureau of Statistics of the People's Republic of China, China Statistical Yearbook. China Statistics Press (2022) [Google Scholar]
  2. Z.M. Du, L. Chen, X.Q. Jin, Data-driven based reliability evaluation for measurements of sensors in a vapor compression system, Energy 122, 237–248 (2017) [CrossRef] [Google Scholar]
  3. Y.C. Liu, S.C. Wang, Y.B. Deng, W.W. Ma, Y. Ma, Numerical simulation and experimental study on ventilation system for powerhouses of deep underground hydropower stations, Appl. Thermal Eng. 105, 151–158 (2016) [CrossRef] [Google Scholar]
  4. M.S. Chang, J.W. Park, Y.M. Choi, T.K. Park, B.O. Choi, C.J. Shin, Reliability evaluation of scroll compressor for system air conditioner, J. Mech. Sci. Technol. 30, 4459–4463 (2016) [CrossRef] [Google Scholar]
  5. F.A. Mostafa, M.H. Rahdar, F. Nasiri, F. Haghighat, Fault identification and fault impact analysis of the vapor compression refrigeration systems in buildings: a system reliability approach, Energies 15, 1–21 (2022) [Google Scholar]
  6. B.P. Cai, X.D. Kong, Y.H. Liu, J. Lin, X.B. Yuan, H.Q. Xu, R.J. Ji, Application of bayesian networks in reliability evaluation, IEEE Trans. Ind. Inf. 15, 2146–2157 (2019) [CrossRef] [Google Scholar]
  7. Z.K. Liu, Y.H. Liu, A Bayesian network based method for reliability analysis of subsea blowout preventer control system, J. Loss Prevent. Process Ind. 59, 44–53 (2019) [CrossRef] [Google Scholar]
  8. U. Bhardwaj, A.P. Teixeira, C.G. Soares, Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty, Reliab. Eng. Syst. Saf. 218, 1–22 (2022) [Google Scholar]
  9. P. Liu, D.G. Shen, J. Cao, Research on a real-time reliability evaluation method integrated with online fault diagnosis: subsea all-electric christmas tree system as a case study, Strojniški vestnik 68, 39–55 (2022) [CrossRef] [Google Scholar]
  10. B. Sun, Y. Li, Z.L. Wang, D.Z. Yang, Y. Ren, Q. Feng, A combined physics of failure and Bayesian network reliability analysis method for complex electronic systems, Process Saf. Environ. Protect. 148, 698–710 (2021) [CrossRef] [Google Scholar]
  11. A. Halabi, R.S. Kenett, L. Sacerdote, Modeling the relationship between reliability assessment and risk predictors using bayesian networks and a multiple logistic regression model, Qual. Eng. 30, 663–675 (2018) [CrossRef] [Google Scholar]
  12. D. Zhang, Q. Liu, H. Yan, M. Xie, A matrix analytic approach for Bayesian network modeling and inference of a manufacturing system, J. Manufactur. Syst. 60, 202–213 (2021) [CrossRef] [Google Scholar]
  13. S.J. Xiang, Y.Q. Lv, Y.F. Li, L. Qian, Reliability analysis of failure-dependent system based on bayesian network and fuzzy inference model, Electronics. 12, 1–23 (2023) [Google Scholar]
  14. Y.L. Wang, Y.K. Ding, G.D. Chen, S.S. Jin, Human reliability analysis and optimization of manufacturing systems through Bayesian networks and human factors experiments: a case study in a flexible intermediate bulk container manufacturing plant, Int. J. Ind. Ergon. 72, 241–251 (2019) [CrossRef] [Google Scholar]
  15. B. Sun, Z.J. Yang, N. Balakrishnan, C.H. Chen, H.L. Tian, W. Luo, An adaptive bayesian melding method for reliability evaluation via limited failure data: an application to the Servo Turret, Appl. Sci. 10, 1–16 (2020) [Google Scholar]
  16. H. Li, Z.M. Deng, N.A. Golilarz, C.G. Soares, Reliability analysis of the main drive system of a CNC machine tool including early failures, Reliab. Eng. Syst. Saf. 215, 1–15 (2021) [Google Scholar]
  17. H. Li, C.G. Soares, Assessment of failure rates and reliability of floating offshore wind turbines, Reliab. Eng. Syst. Saf. 228, 1–13 (2022) [Google Scholar]
  18. H. Li, C.G. Soares, H.Z. Huang, Reliability analysis of a floating offshore wind turbine using Bayesian Networks, Ocean Eng. 217, 1–17 (2020) [Google Scholar]
  19. H. Mohammadi, Z. Fazli, H. Kaleh, H.R. Azimi, S.M. Hanifi, N. Shafiee, Risk analysis and reliability assessment of overhead cranes using fault tree analysis integrated with Markov chain and fuzzy Bayesian networks, Math. Probl. Eng. 2021, 1–17 (2021) [CrossRef] [Google Scholar]
  20. S. Adumene, F. Khan, S. Adedigba, Operational safety assessment of offshore pipeline with multiple MIC defects, Comput. Chem. Eng. 138, 1–16 (2020) [Google Scholar]
  21. Y.F. Wang, T. Qin, B. Li, X.F. Sun, Y.L. Li, Fire probability prediction of offshore platform based on Dynamic Bayesian Network, Ocean Eng. 145, 112–123 (2017) [CrossRef] [Google Scholar]
  22. Q. Jiang, D.C. Gao, L. Zhong, S.W. Guo, A. Xiao, Quantitative sensitivity and reliability analysis of sensor networks for well kick detection based on dynamic Bayesian networks and Markov chain, J. Loss Prevent. Process Ind. 66, 1–12 (2020) [Google Scholar]
  23. Z.Q. Li, T.X. Xu, J.Y. Gu, Q Dong, L.Y. Fu, Reliability modelling and analysis of a multi-state element based on a dynamic Bayesian network, R. Soc. Open Sci. 5, 1–18 (2018) [Google Scholar]
  24. Q.K. Xiao, S. Gao, X.G. Gao, Inference learning theory and application of dynamic Bayesian networks (National Defense Industry Press, Beijing, 2007) [Google Scholar]
  25. P. Weber, L. Jouffe, Reliability modelling with dynamic bayesian networks, IFAC Proc. 36, 57–62 (2003) [Google Scholar]
  26. B.P. Cai, Y.H. Liu, Y.P. Ma, L. Huang, Z.K. Liu, A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults, Energy 93, 1308–1320 (2015) [CrossRef] [Google Scholar]
  27. P. J. Morrison, R. Pandita, X. Xiao, R. Chillarege, L. Williams, Are vulnerabilities discovered and resolved like other defects? Empir. Software Eng. 23, 1383–1421 (2018) [CrossRef] [Google Scholar]
  28. IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems, in IEEE Std 493–2007 (Revision of IEEE Std 493–1997) (2007) [Google Scholar]
  29. W.J. Gang, S.W. Wang, F. Xiao, D.C. Gao, Robust optimal design of building cooling systems considering coolingload uncertainty and equipment reliability, Appl. Energy 159, 265–275 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.