Issue
Int. J. Metrol. Qual. Eng.
Volume 12, 2021
Topical Issue - Advances in Metrology and Quality Engineering
Article Number 24
Number of page(s) 9
DOI https://doi.org/10.1051/ijmqe/2021022
Published online 01 October 2021
  1. S. Basu, Plant Flow Measurement and Control Handbook (Academic Press, 2019) [Google Scholar]
  2. J.W. Murdock, C.J. Foltz, C. Gregory, Performance characteristics of elbow flowmeters, J. Basic Eng. 86, 498–503 (1964) [CrossRef] [Google Scholar]
  3. W.M. Lansford, The use of an elbow in a pipe line for determining the rate of flow in the pipe, University of Illinois Engineering Experiment Station bulletin 289 (1936) [Google Scholar]
  4. D. Taylor, M. Mcpherson, E. Meier, Elbow meter performance [with discussion], J. Am. Water Work Assn. 46, 1087–1095 (1954) [CrossRef] [Google Scholar]
  5. R.H. Moen, Discussion: Performance characteristics of elbow flowmeters, J. Basic Eng. 86, 504–505 (1964) [CrossRef] [Google Scholar]
  6. A. Taylor, J. Whitelaw, M. Yianneskis, Curved ducts with strong secondary motion: velocity measurements of developing laminar and turbulent flow, Fluids Eng. Trans. ASME 104 (1982) [Google Scholar]
  7. R.F. Einhellig, C. Schmitt, J. Fitzwater, Flow measurement opportunities using irrigation pipe elbows, Hydraulic Measurements and Experimental Methods pecialty Conference (HMEM) 2002 (2002) [Google Scholar]
  8. O. Deneux, M. Arenas, CFD and Metrology in Flowmetering: Rcs Flow Measurement with Elbow Taps and Its Uncertainty, International Congress of Metrology (2013) [Google Scholar]
  9. B.Z. Yuan, S. Nishiyama, M. Fukada et al., Hydraulic Design Procedure for Bypass Flow Meters Using a Pipe Bend, Transactions of the Asae (2003) [Google Scholar]
  10. D.P. Lannes, A.L. Gama, T.F.B. Bento, Measurement of Flow Rate Using Straight Pipes and Pipe Bends with Integrated Piezoelectric Sensors, Flow Meas. Instrum. 60, 208–216 (2018) [CrossRef] [Google Scholar]
  11. L. Zhang, X. Wu, M. Li et al., Optimization Research of Elbow Flow Meter Design with Alterable Measurement Range, Hedongli Gongcheng/Nuclear Power Engineering 38, 145–148 (2017) [Google Scholar]
  12. Y. Ikarashi, T. Uno, T. Yamagata et al., Influence of Elbow Curvature on Flow and Turbulence Structure Through a 90° Elbow, Nucl. Eng. Des. 339, 181–193 ( 2018) [CrossRef] [Google Scholar]
  13. Y. Ikarashi, N. Fujisawa, Mass Transfer Measurements and Flow Separation Behavior in a 90° Short Elbow, Int. J. Heat Mass Transf. 136, 1106–1114 (2019) [CrossRef] [Google Scholar]
  14. S. Taguchi, Y. Ikarashi, T. Yamagata et al., Mass and Momentum Transfer Characteristics in 90° Elbow Under High Reynolds Number, Int. Commun. Heat Mass Transf. 90, 103–110 (2018) [CrossRef] [Google Scholar]
  15. Y. Ikarashi, S. Taguchi, T. Yamagata et al., Mass and Momentum Transfer Characteristics in and Downstream of 90° Elbow, Int. J. Heat Mass Transf. 107, 1085–1093 (2017) [CrossRef] [Google Scholar]
  16. N. Fujisawa, T. Takizawa, T. Yamagata, Comparative Study of Mass Transfer Distributions and Oil-flow Visualizations with Image Analysis on Long and Short 90° Elbows, Exp. Therm. Fluid Sci. 123, 110332 (2021) [CrossRef] [Google Scholar]
  17. Z. Wang, R. Örlü, P. Schlatter et al., Direct Numerical Simulation of a Turbulent 90° Bend Pipe Flow, Int. J. Heat Fluid Flow 73, 199–208 (2018) [CrossRef] [Google Scholar]
  18. H. Zhu, J. Jing, X. Yang et al., Numerical simulation of the oil-water two-phase flow in horizontal bend pipes, vol 158 of Computer Science for Environmental Engineering and EcoInformatics. CSEEE 2011, Communications in Computer and Information Science. Springer, Berlin, Heidelberg (2011) [Google Scholar]
  19. Qiao, S. Kim, Air-water two-phase bubbly flow across 90° vertical elbows. Part I: Experiment, Int. J. Heat Mass Transfer 123, 1221–1237 (2018) [CrossRef] [Google Scholar]
  20. S. Qiao, R. Kong, S. Kim, Air-water two-phase bubbly flow across 90° vertical elbows. Part II: modeling, Int. J. Heat Mass Transfer 123, 1238–1252 (2018) [CrossRef] [Google Scholar]
  21. S. Qiao, W. Zhong, S. Wang et al., Numerical simulation of single and two-phase flow across 90° vertical elbows, Chem. Eng. Sci. 230, 116185 (2021) [CrossRef] [Google Scholar]
  22. Q. Mazumder, V.T. Nallamothu, F. Mazumder, Comparison of characteristic particle velocities in solid-liquid multiphase flow in elbow, Int. J. Thermofluids 5–6, 100032 (2020) [CrossRef] [Google Scholar]
  23. A. Gogolin, M. Wasilewski, G. Ligus et al., Influence of geometry and surface morphology of the U-tube on the fluid flow in the range of various velocities, Measurement 164, 108094 (2020) [CrossRef] [Google Scholar]
  24. A. Rawat, S. Singh, V. Seshadri, CFD analysis of the performance of elbow-meter with high concentration coal ash slurries, Flow Measur. Instr. 72, 101724 (2020) [CrossRef] [Google Scholar]
  25. H. Tao, H. Chen, J. Xie et al., An alternative approach to quantifying fluid flow uniformity based on area-weighted average velocity and mass-weighted average velocity, Energy Build. 45, 116–123 (2012) [CrossRef] [Google Scholar]
  26. W. Dean, Fluid motion in a curved duct, proceedings of the royal society a: mathematical, Phys. Eng. Sci. 121, 402–420 (1928) [Google Scholar]
  27. H. Zhan, H. Zhu, C. LI, M. Ma, Variation rule for the pressure-drop of curved tubes pipes with Dean Vortices and itsnumerical simulation, Mach. Des. Manufact. 230, 193–195 (2010) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.