Open Access
Int. J. Metrol. Qual. Eng.
Volume 9, 2018
Article Number 15
Number of page(s) 7
Published online 22 November 2018
  1. P. Bourdet, Contribution à la mesure tridimensionnelle: modèle d'identification géométrique; correction des machines à mesurer; métrologie fonctionnelle des pièces mécaniques, Ph.D. thesis, University of Nancy 1, France, 1988 [Google Scholar]
  2. T. Kanada, S. Suzuki, Evaluation of minimum zone flatness by means of nonlinear optimization techniques and its verification, Precis. Eng. 15, 93–99 (1993) [Google Scholar]
  3. M. Radouani, B. Anselmetti, Identification of real surfaces and inspection of the ISO specifications using a solver, Mech. Ind. 4, 249–258 (2003) [Google Scholar]
  4. T. Weber, S. Motavalli, B. Fallahi, S. Hossein Cheraghi, A unified approach to form error evaluation, J. Int. Soc. Precis. Eng. Nanotechnol. 26, 269–278 (2002) [Google Scholar]
  5. J. Huang, An efficient approach for solving the straightness and the flatness problems at large number of data points, Comput. Aided Des. 35, 15–25 (2003) [Google Scholar]
  6. G.L. Samuel, M.S. Shunmugam, Evaluation of circularity and sphericity from coordinate measurement data, J. Mater. Process. Technol. 139, 90–95 (2003) [CrossRef] [Google Scholar]
  7. B. Gapinski, M. Grzelka, M. Rucki, The roundness deviation measurement with coordinate measuring machines, Eng. Rev. 26, 1–6 (2006) [Google Scholar]
  8. A. Jalid, S. Hariri, N.E. Laghzale, Influence of sample size on flatness estimation and uncertainty in three-dimensional measurement, Int. J. Metrol. Qual. Eng. 6, 102 (2015) [CrossRef] [EDP Sciences] [Google Scholar]
  9. B. Anselmetti, Manuel de tolérancement: Métrologie avec les normes ISO (Hermes Science Publications, London, 2011), Vol. 5 [Google Scholar]
  10. A.A.G. Requicha, Towards a theory of geometrical tolerancing, Int. J. Rob. Res. 2, 4 (1983) [Google Scholar]
  11. E. Pairel, Métrologie fonctionnelle par Calibre virtuel sur Machine à mesurer tridimensionnelle, Ph.D. thesis, University of Savoie, 1995 [Google Scholar]
  12. E. Pairel, A new approach for coordinate measurement, in XIV IMEKO World Congress, Tampere, Finland, pp. 278–283 (1997) [Google Scholar]
  13. E. Pairel, Three-dimensional verification of geometric tolerances with the “fitting gauge” model, J. Comput. Inform. Sci. Eng. 7, 1, (2007) [CrossRef] [Google Scholar]
  14. E. Pairel, Three-dimensional metrology with the virtual fitting gauges, 11th CIRP International Conference on Computer Aided Tolerancing, France (2009) [Google Scholar]
  15. S. Samper, F. Formosa, Form defects tolerancing by natural modes analysis, J. Comput. Inform. Sci. Eng. 7, 44–51 (2006) [CrossRef] [Google Scholar]
  16. F. Formosa, S. Samper, I. Perpoli, Modal expression of form defects, in Models for Computer Aided Tolerancing in Design and Manufacturing, edited by J.K. Davidson (Springer, Dordrecht, The Netherlands, 2007), pp. 13–22 [CrossRef] [Google Scholar]
  17. H. Favreliere, Modal Tolerancing: From metrology to specifications, Ph.D. thesis, University of Savoie, 2009 [Google Scholar]
  18. H. Favreliere, S. Samper, P.A. Adragna, Characterization of defects of a spherical surface by modal decomposition, Int. J. Numer. Eng. Collab. Des. Simul. ArXiv:1002.0251v1 (2009). [Google Scholar]
  19. H. Favreliere, S. Samper, P.A. Adragna, M. Giordano, 3D statistical analysis and representation of form error by modal approach, 10th CIRP International Seminar on Computer-Aided Tolerancing (2007) [Google Scholar]
  20. Norme ISO 12781-1:2011, Geometrical Product Specifications (GPS) − Flatness − Part 1: Vocabulary and Flatness Parameters (2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.