Open Access
Int. J. Metrol. Qual. Eng.
Volume 9, 2018
Article Number 16
Number of page(s) 16
Published online 14 December 2018
  1. R.A. Lemen, J.M. Dement, J.K. Wagoner, Epidemiology of asbestos-related diseases, Environ. Health Perspect. 34, 1 (1980) [Google Scholar]
  2. E.J. Chatfield, Review of: Sampling and analysis of consumer garden products that contain vermiculite EPA 744-r-00-010, August, 2000, in Vermiculite Conference 2001 Proceeding Paper, 2001 NIOSH, Revised Recommended Asbestos Standard, Cincinnati, OH: U.S. Department of Health, Education, and Welfare, Center for Disease Control [Google Scholar]
  3. National Institute for Occupational Safety and Health, DHEW (NIOSH), Publication No. 77-169, 1976 [Google Scholar]
  4. IARC, Some Miscellaneous Pharmaceutical Substances (International Agency for Research on Cancer, Lyon, France, (1976) [Google Scholar]
  5. IARC, WHO, Asbestos (Chrysotile, Amosite, Crocidolite, Tremolite, Actinolite and Anthophyllite). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (International Agency for Research on Cancer, Lyon, France, 2012), Vol. 100, pp. 164–179 [Google Scholar]
  6. B.W.S. Robinson, R.A. Lake, Advances in malignant mesothelioma, New Engl. J. Med. 353, 1591–1603 (2005) [CrossRef] [Google Scholar]
  7. I.L.G. Anabelle Gilg Soit, S. Ducamp, C. Gramond, et al., Résumé//Abstract, J. Natl. Cancer Inst. 105, 293–301 (2013) [CrossRef] [PubMed] [Google Scholar]
  8. L.A. Peipins, M. Lewin, S. Campolucci, et al., Radiographic abnormalities and exposure to asbestos-contaminated vermiculite in the community of Libby, Montana, USA, Environ. Health Perspect. 111, 1753 (2003) [CrossRef] [PubMed] [Google Scholar]
  9. B.S. Van Gosen, Reported Historic Asbestos Mines, Historic Asbetos Prospects, and Natural Occurrences of Asbestos in the Eastern United States, Open File Report 2005–1189, version 2.0 [Google Scholar]
  10. B.S. Van Gosen, Badley, Reported Historic Asbestos Mines, Historic Asbestos Prospects, and Natural Asbestos Occurrences in the Southwestern United States (Arizona, Nevada, and Utah), Open File Report 2008–1095 [Google Scholar]
  11. B.S. Van Gosen, Reported Historic Asbestos Prospects and Natural Asbestos Occurrences in the Central United States, 2006 [Google Scholar]
  12. G. Meeker, Asbestos sans mineralogy? A view from a different hilltop, Elements 5, 269 (2009) [Google Scholar]
  13. F.C. Hawthorne, R. Oberti, G.E. Harlow, et al., Nomenclature of the amphibole supergroup, Am. Mineral. 97, 2031–2048 (2012) [Google Scholar]
  14. B.E. Leake, A.R.P.S. Woolley, E.S. Charles, et al., Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names, Mineral. Mag. 61, 295–321 (1997) [Google Scholar]
  15. W.J. Campbell, R.L. Blake, L.L. Brown, et al. Selected silicate minerals and their asbestiform varieties, Bur. Mines Info. 1977 [Google Scholar]
  16. ISO 13794 : Ambient air--Determination of asbestos fibres--Indirect-transfer transmission electron microscopy method. International Organization for Standardization, 1999 [Google Scholar]
  17. National Research Council, Asbestiform Fibers: Nonoccupational Health Risks (National Academies Press, Washington, DC , 1984) [Google Scholar]
  18. R.J. Lee, B.R. Strohmeier, K.L. Bunker, D.R. Van Orden, Naturally occurring asbestos: a recurring public policy challenge, J. Hazard. Mater. 153, 1–21 (2008) [Google Scholar]
  19. VDI 3492, Indoor air measurement: ambient air measurement: measurement of inorganic fibrous particles: scanning electron microscopy method, June 2013 [Google Scholar]
  20. ISO, B.S. 14966, Ambient air determination of numerical concentration of inorganic fibrous particles–scanning electron microscopy method, 2002 [Google Scholar]
  21. M. Goldberg, D. Hémon, Health effects of major types of asbestos exposure, INSERM, Collective Expertise Collection, 1997 [Google Scholar]
  22. T. Schneider, L.S. Davies, S.T. Laurie, et al., Development of a method for the determination of low contents of asbestos fibres in bulk material, Analyst 123, 1393–1400 (1998) [CrossRef] [PubMed] [Google Scholar]
  23. C. Merlet, An accurate computer correction program for quantitative electron probe microanalysis, Microchim. Acta 114, 363–376 (1994) [CrossRef] [Google Scholar]
  24. A.J. Locock, An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations, Comput. Geosci. 62, 1–11 (2014) [Google Scholar]
  25. D. Lahondère, M. Misseri, X. Roy, Understanding asbestos via geology (General Review of Roads), p. 4. [Google Scholar]
  26. A.M. Langer, A.D. Mackler, F.D. Pooley, Microscopical investigation of asbestos fibers, Environ. Health Perspect. 9, 63–80 (1974) [CrossRef] [Google Scholar]
  27. D.R. Van Orden, R.J. Lee, K.A. Allison, et al., Width distributions of asbestos and non-asbestos amphibole minerals. Indoor Built Environ. 18, 531–540 (2009) [Google Scholar]
  28. Kirk-Othmer, Encyclopedia of Chemical Technology (John Wiley & Sons, Inc., New York, 1978), Vol. 3, 3rd edition [Google Scholar]
  29. H. Winchell, Nomenclature of amphiboles compiled by Bernard E. Leake, Am. Mineral. 63, 1023–1052 (1978) [Google Scholar]
  30. S. Junttila, A. Tossavaitten, T. Hartikainen, et al., Airborne mineral dust at nine crushed rock plants in Finland, Appl. Occup. Environ. Hyg., 12, 882–886 (1997) [Google Scholar]
  31. G.P. Meeker, H.A. Lowers, G.A. Swayze, et al., Mineralogy and Morphology of Amphiboles Observed in Soils and Rocks in El Dorado Hills, California, 2006 [Google Scholar]
  32. B. Gylseth, T. Norseth, V. et Skaug, Amphibole fibers in a taconite mine and in the lungs of the miners, Am. J. Indus. Med. 2, 175–184 (1981) [CrossRef] [Google Scholar]
  33. A.S. Baidya, J. Paul, D.C. Pal, et al., Mode of occurrences and geochemistry of amphibole in the Kolihan-Chandmari copper deposits, Rajasthan, India: insight into the ore-forming process, Ore Geol. Rev. 80 1092–1110 (2017) [Google Scholar]
  34. M. Germine, Asbestiform and Non-Asbestiform Amphiboles, Cadmium, and Zinc in Quarry Samples of Marble from Franklin and Sparta, Sussex County, New Jersey Geological Survey Geologic Report 15, New Jersey, 1986, 19 p. [Google Scholar]
  35. J.L. Bouchez, Examples of automatic digital data processing in structural geology and petrology, University of Nantes Natural Science Institute, 1971 [Google Scholar]
  36. G.P. Meeker, A.M. Bern, I.K. Brownfield, et al., The composition and morphology of amphiboles from the Rainy Creek Complex, near Libby, Montana, Am. Mineral., 88, 1955–1969 (2003) [CrossRef] [Google Scholar]
  37. S. Mazziotti-Tagliani, G.B. Andreozzi, B.M. Bruni, et al., Quantitative chemistry and compositional variability of fluorine fibrous amphiboles from Biancavilla (Sicily, Italy). Periodico Mineral. 78, 65–74 (2009) [Google Scholar]
  38. IARC, Fluoro-edenite, Monographs IARC, Vol. 111, Monograph 111-02, 2011 [Google Scholar]
  39. EPA/635/R-11/002F, Toxicological review of Libby amphibole asbestos, 2014 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.