Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 5, Number 1, 2014
Article Number 102
Number of page(s) 9
DOI https://doi.org/10.1051/ijmqe/2014002
Published online 22 September 2014
  1. G.M. Cordeiro, E.M.M. Ortega, G.O Silva, The exponentiated generalized gamma distribution with application to lifetime data, J. Statist. Comput. Simul. iFirst, 1–16 (2010) [Google Scholar]
  2. E.W. Stacy, A Generalization of the Gamma distribution, Ann. Math. Stat. 33, 1187–1192 (1962) [CrossRef] [Google Scholar]
  3. G.S. Mudholkar, D.K. Srivastava, M. Friemer, The exponentiated Weibull family: A reanalysis of the bus-Motor-Failure data, Technometrics 37, 436–445 (1995) [CrossRef] [Google Scholar]
  4. G.S. Mudholkar, D.K. Srivastava, G.D. Kollia, A generalization of the Weibull distribution with the application to the analysis of survival data, J. Am. Statist. Assoc. 91, 1575–1583 (1996) [CrossRef] [Google Scholar]
  5. R.D. Gupta, D. Kundu, Generalized exponential distributions, Aust. N.Z. J. Stat. 41, 173–188 (1999) [CrossRef] [Google Scholar]
  6. R.D. Gupta, D. Kundu, Exponential exponentiated distribution: An alternative to Gamma and Weibull distributions, Biometrika J. 43, 117–130 (2001) [CrossRef] [Google Scholar]
  7. D. Kundu, M.Z. Raqab, Generalized Rayleigh distribution: Different methods of estimation, Comput. Stat. Data Anal. 49, 187–200 (2005) [CrossRef] [Google Scholar]
  8. P. Kumaraswamy, A generalized probability density function for double-bounded random-process, J. Hydrol. 462, 79–88 (1980) [NASA ADS] [CrossRef] [Google Scholar]
  9. M.C. Jones, Kumaraswamy’s distribution: A beta-type distribution with some tractibility advantages, Staist. Met. 6, 70–81 (2009) [CrossRef] [Google Scholar]
  10. G.M. Cordeiro, M. de Castro, A new family of generalized distributions, J. Statist. Comput. Simul. , 1–17 (2009) [Google Scholar]
  11. M.A.R. Pascoa, E.M.M. Ortega, G.M.C. Cordeiro, P.F. Paranaiba, The Kumaraswamy-generalized gamma distribution with application in survival analysis, Stat. Met. 8, 411–433 (2011) [CrossRef] [Google Scholar]
  12. R.C. Gupta, H.O. Akman, Mean residual life functions for certain types of non-monotonic ageing, Comm. Statist. Stochastic Models 11, 219–225 (1995) [CrossRef] [Google Scholar]
  13. J. Mi, Bathtub failure rate and upside-down bathtub mean residual life, IEEE Trans. Rel. 44, 388–391 (1995) [CrossRef] [Google Scholar]
  14. J.H. Lim, D.H. Park, Trend change in mean residual life, IEEE Trans. Rel. 44, 291–296 (1995) [CrossRef] [Google Scholar]
  15. M. Mitra, S.K. Basu, Change point estimation in non-monotonic ageing models, Ann. Inst. Stat. Math. 47, 483–491 (1995) [Google Scholar]
  16. A.A. Salvia, Some results on discrete mean residual life, IEEE Trans. Rel. 45, 359–361 (1996) [CrossRef] [Google Scholar]
  17. F. Guess, F. Proschan, Mean Residual Life: Theory and Applications (Handbook of Statistics 7: Quality Control and Reliability, North-Holland, 1988), pp. 215–224 [Google Scholar]
  18. G.L. Ghai, J. Mi, Mean residual life and its association with failure rate, IEEE Trans. Rel. 48, 262–266 (1999) [CrossRef] [Google Scholar]
  19. L.C. Tang, Y. Lu, E.P. Chew, Mean residual life of lifetime distributions, IEEE Trans. Rel. 48, 73–78 (1999) [CrossRef] [Google Scholar]
  20. Z.M. Chen, D. Ferger, J. Mi, Estimation of the change point of a distribution based on the number of failed test items, Metrika 53, 31–38 (2001) [CrossRef] [Google Scholar]
  21. L. Bekker, J. Mi, Shape and crossing properties of mean residual life functions, Statist. Probab. Lett. 64, 225–234 (2003) [CrossRef] [Google Scholar]
  22. J. Mi, A General approach to the shape of failure rate and MRL functions, Naval Res. Logist. 51, 543–556 (2004) [CrossRef] [Google Scholar]
  23. M. Bebbington, C.D. Lai, R. Zitikis, Estimating the turning point of a bathtub shaped failure distribution, J. Statist. Plann. Inference 138, 1157–1166 (2008) [CrossRef] [Google Scholar]
  24. Y. Shen, M. Xie, C.D. Tang, On the change point of the mean residual life of series and parallel systems, Aust. N. Z. J. Stat. 52, 109–121 (2010) [CrossRef] [Google Scholar]
  25. M. Shafaei Noughabi, G.R. Mohtashami Borzadran, A.H. Rezaei Roknabadi, On the reliability properties of some weighted models of bathtub shaped hazard rate distribution, Probab. Eng. Inform. Sci. 27, 125–140 (2013) [CrossRef] [Google Scholar]
  26. M. Xie, T.N. Goh, Y. Tang, On the changing point of mean residual life and failure rate function for generalized Weibull distributions, Reliab. Eng. Syst. Safe. 84, 293–299 (2004) [CrossRef] [Google Scholar]
  27. M. Bebbington, C.D. Lai, R. Zitikis, Useful period for lifetime distributions with bathtub shaped hazard rate functions, IEEE Trans. Rel. 55, 245–251 (2006) [CrossRef] [Google Scholar]
  28. M. Bebbington, C.D. Lai, R. Zitikis, Optimum burn-in time for a bathtub shaped failure rate distribution, Methodol. Comput. Appl. Probab. 55, 245–251 (2007) [Google Scholar]
  29. E.J. Muth, The Theory and Applications of Reliability, Reliability Models with Positive Memory Derived from the Mean Residual Life Function (Academic Press, London, 1977), Vol. 2, pp. 401–435 [Google Scholar]
  30. R. Calabria, G. Pulcini, On the maximum likelihood and least squares estimation in the inverse Weibull estimation, Statist. Appl. 2, 53–66 (1990) [Google Scholar]
  31. J.F. Lawless, Statistical Models and Methods for Lifetime Data (Wiley, New York, 2003) [Google Scholar]
  32. C. Cox, The generalized F distribution: an umberella for parametric survival analysis, Stat. Med. 27, 4301–4312 (2008) [CrossRef] [PubMed] [Google Scholar]
  33. C.D. Lai, M. Xie, Stochastic Ageing and Dependence for Reliability (Springer, New York, 2006) [Google Scholar]
  34. F. Guess, K.H. Nam, D.H. Park, Failure rate and mean residual life with trend changes, Asia Pac. J. Oper. Res. 15, 239–244 (1998) [Google Scholar]
  35. G.H. Weiss, M. Dishon, Some economic problems related to burn-in programs, IEEE Trans. Rel. 20, 190–195 (1971) [CrossRef] [Google Scholar]
  36. W.Y. Yun, Y.W. Lee, L. Ferreira, Optimal burn-in time under cumulative free replacement warranty, Reliab. Eng. Syst. Safety 78, 93–100 (2002) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.