Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 5, Number 1, 2014
Article Number 101
Number of page(s) 10
DOI https://doi.org/10.1051/ijmqe/2014001
Published online 22 September 2014
  1. A. Wozniak, New method for testing the dynamic performance of CMM scanning probes, IEEE Trans. Instrum. Meas. 56, 2767–2774 (2006) [CrossRef] [Google Scholar]
  2. J.M. Baldwin, K.D. Summerhays, D.A. Campbell, R.P. Henke, Application of simulation software to coordinate measurement uncertainty evaluations, Measure 2, 40–52 (2007) [Google Scholar]
  3. JCGM 100:2008, Evaluation of measurement data - Guide to the expression of uncertainty in measurement, (GUM) 1st edn. (Joint Committee for Guides in Metrology (JCGM), Bureau International des Poids et Mesures, Sèvres, 2008), 120 p. [Google Scholar]
  4. B.N. Taylor, C.E. Kuyatt, The new NIST policy on statements of uncertainty, CRTD, International forum on dimensional tolerancing and metrology, ASME 27, 79–83 (1993) [Google Scholar]
  5. R.G. Wilhelm, R. Hocken, H. Schwenke, Task Specific Uncertainty in Coordinate Measurement, CIRP Ann. Manuf. Technol. 50, 553–563 (2001) [Google Scholar]
  6. A. Weckenmann, M. Knauer, T. Killmaier, Uncertainty of coordinate measurements on sheet-metal parts in the automotive industry, J. Mater. Proc. Technol. 115, 9–13 (2001) [CrossRef] [Google Scholar]
  7. S.D. Phillips, B. Borchardt, A.J. Abackerli, C. Shakarji, D. Sawyer, The validation of CMM task specific measurement uncertainty software, Proceedings of the ASPE summer tropical meeting – CMMs (American Society for Precision Engineering – ASPE, Charlotte, 2003), pp. 1-6 [Google Scholar]
  8. S. Venkatachalam, B. Uppiliappan, J. Raja, Evaluation of task specific uncertainty for CMM measurements (2002), http://www.aspe.net/publications/annual˙2002/pdf/posters/2metro/5measu/880.pdf [Google Scholar]
  9. C. Butler, An investigation into the performance of probes on coordinate measuring machines, Ind. Metrol. 2, 59–70 (1991) [CrossRef] [Google Scholar]
  10. S. Achiche, A. Wozniak, Three-dimensional modeling of coordinate measuring machines probing accuracy and settings using fuzzy knowledge bases: Application to TP6 and TP200 triggering probes, Artificial Intelligence for Engineering Design, Analysis and Manufacturing 26, 425–441 (2012) [Google Scholar]
  11. M.J. Ren, C.F. Cheung, L.B. Kong, A task specific uncertainty analysis method for least-squares-based form characterization of ultra-precision freeform surfaces, Meas. Sci. Technol. 23, 054005 (2012) [CrossRef] [Google Scholar]
  12. G. Zhang, R. Veale, T. Charlton, B. Borchardt, R. Hocken, Error Compensation of Coordinate Measuring Machines’, CIRP Ann. Manuf. Technol. 34, 445–448 (1985) [Google Scholar]
  13. P.S. Huang, J. Ni, On-line error compensation of Coordinate Measuring Machines’, Int. J. Machine Tools Manuf. 35, 725–738 (1995) [CrossRef] [Google Scholar]
  14. G. Hermann, Volumetric Error Correction in Coordinate Measurement, in 4th Serbian-Hungarian Joint Symposium on Intelligent Systems (SISY 2006), Subotica, Serbia, September 29-30, 2006, pp. 409-416 [Google Scholar]
  15. C. Che, J. Ni, A generic coordinate transformation uncertainty assessment approach and its application in machine vision metrology, Int. J. Machine Tools Manuf. 38, 1241–1256 (1998) [CrossRef] [Google Scholar]
  16. J.P. Kruth, P.C. Vanherck, C. Van den Bergh, Compensation of static and transient thermal errors on CMMs, CIRP Ann. Manuf. Technol. 50, 377–380 (2001) [CrossRef] [Google Scholar]
  17. J.W.M.C. Teeuwsen, J.A. Soons, P.H.J. Schellekens, A general method for error description of CMMs using polynomial fitting procedures, CIRP Ann. Manuf. Technol. 38, 505–510 (1989) [CrossRef] [Google Scholar]
  18. K.D. Kim, S.C. Chung, Accuracy improvement of the On-Machine inspection system by correction of geometric and transient thermal errors, Trans. NAMRI/SME 31, 209–216 (2003) [Google Scholar]
  19. W. Jakubiec, Analytical estimation of uncertainty of coordinate measurements of geometric deviations using models based on distance between point and straight line, Adv. Manuf. Sci. Technol. 33, 45–53 (2009) [Google Scholar]
  20. G.L. Samuel, M.S. Shunmugam, Evaluation of circularity and sphericity from coordinate measurement data’, J. Mater. Proc. Technol. 139, 90–95 (2003) [Google Scholar]
  21. C.M. Shakarji, J. Raffaldi, Evaluating coordinate measuring machine software geometry uncertainties using national and international standards, in Measurement Science Conference Anaheim, California, USA, January 12-16, 2004 [Google Scholar]
  22. Techniques of Determining the Uncertainty of Measurement in Coordinate Metrology, ISO Technical Report 15530–1 (draft), July 16, 1998 [Google Scholar]
  23. P. Cauchick-Miguel, T. Kinga, J. Davis, CMM verification: a survey’, Measurement 17, 1–16 (1996) [CrossRef] [Google Scholar]
  24. W.E. Singhose, W.P. Searing, N.C. Singer Improving repeatability of coordinate measuring machines with shaped command signals’, Precis. Eng. 18, 138–146 (1996) [CrossRef] [Google Scholar]
  25. H.N. Hansen, L. De Chiffre, A Combined Optical and Mechanical Reference Artefact for Coordinate Measuring Machines, CIRP Ann. Manuf. Technol. 46, 467–470 (1997) [CrossRef] [Google Scholar]
  26. L. Arriba, E. Trapet, M. Bartscher, M. Franke, A. Balsamo, G. Costelli, S. Torre, F. Kitzsteiner, F. San Martín, in Methods and artefacts to calibrate large CMMs Proceedings of the 1st International EUSPEN conference, Bremen, 1999, pp. 391–394 [Google Scholar]
  27. M. Abbe, K. Takamasu, S. Ozono, Reliability on calibration of CMM, Measurement 33, 359–368 (2003) [CrossRef] [Google Scholar]
  28. E. Curran, P. Phelan, Quick check error verification of coordinate measuring machines, J. Mater. Proc. Technol. 155–156, 1207–1213 (2004) [CrossRef] [Google Scholar]
  29. G. Sansoni, S. Carmignato, E. Savio, Validation of the Measurement Performance of a Three-Dimensional Vision Sensor by means of a Coordinate Measuring Machine, in Proc. of IMTC, IEEE, Como, Italy, 2003, pp. 773–778 [Google Scholar]
  30. L. De Chiffre, H.N. Hansen, R.E. Morace, Comparison of Coordinate Measuring Machines using an optomechanical hole plate, CIRP Ann. Manuf. Technol. 54, 479–482 (2005) [CrossRef] [Google Scholar]
  31. A. Weckenmann, J. Lorz, Monitoring coordinate measuring machines by calibrated parts, J. Phys.: Conf. Ser. 13, 190–193 (2005) [CrossRef] [Google Scholar]
  32. A. Woźniak, Testing of the repeatability of stylus change of modular probes used in Coordinate Measuring Machines, in XIX IMEKO World Congress Fundamental and Applied Metrology September 611, Lisbon, Portugal, 2009 [Google Scholar]
  33. G. Zhang, R. Ouyang, B. Lu, A Displacement Method for Machine Geometry Calibration, Ann. CIRP 37, 515–518 (1998) [CrossRef] [Google Scholar]
  34. E. Savio, H.N. Hansen, L. De Chiffre, Approaches to the calibration of freeform artefacts on coordinate measuring machines, Ann. CIRP 51, 433–436 (2002) [CrossRef] [Google Scholar]
  35. C.K. Lim, M. Burdekin, Rapid volumetric calibration of coordinate measuring machines using a hole bar artefact, Proc. Institut. Mech. Eng. B: J. Eng. Manuf. 216, 1083–1093 (2002) [CrossRef] [Google Scholar]
  36. N.A. Barakat, M.A. Elbestawi, A.D. Spence, Kinematic and geometric error compensation of a coordinate measuring machine’, Int. J. Machine Tools Manuf. 40, 833–850 (2000) [CrossRef] [Google Scholar]
  37. H. Schwenke, M. Franke, J. Hannaford, H. Kunzmann, Error mapping of CMMs and machine tools by a single tracking interferometer’, CIRP Ann. Manuf. Technol. 54, 475–478 (2005) [Google Scholar]
  38. J.S. Agapiou, H. Du, Assuring the Day-to-Day Accuracy of Coordinate Measuring Machines – A Comparison of Tools and Procedures’, J. Manuf. Proc. 9, 109–120 (2007) [CrossRef] [Google Scholar]
  39. J.B. Silva, R.J. Hocken, J.A. Miller, G.W. Caskey, P. Ramu, Approach for uncertainty analysis and error evaluation of four-axis co-ordinate measuring machines, Int. J. Adv. Manuf. Technol. 41, 130–1139 (2009) [CrossRef] [Google Scholar]
  40. S. Carmignato, Experimental study on performance verification tests for coordinate measuring systems with optical distance sensors, Proc. SPIE 7239, 1–10 (2009) [Google Scholar]
  41. J.E. Muelaner, Z. Wang, O. Martin, J. Jamshidi, P.G. Maropoulos, Estimation of uncertainty in three-dimensional coordinate measurement by comparison with calibrated points, Meas. Sci. Technol. 21, 025106 (2010) [CrossRef] [Google Scholar]
  42. B. Acko, M. McCarthy, F. Haertig, B. Buchmeister, Standards for testing freeform measurement capability of optical and tactile coordinate measuring machines, Meas. Sci. Technol. 23, 094013 (2012) [CrossRef] [Google Scholar]
  43. G.N. Peggs, A. Lewis, R.K. Leach, Measuring in three dimensions at the mesoscopic level, in Proceedings of ASPE winter topical meeting-machines and processes for micro-scale and mesoscale fabrication, metrology and assembly, FL, USA, 2003, pp. 53–57 [Google Scholar]
  44. http://www.nanocmm.eu/ [Google Scholar]
  45. K. Takamasu, S. Ozawa, T. Asano, A. Suzuki, R. Furutani, S. Ozono, Basic Concepts of Nano-CMM (Coordinate Measuring Machine with Nanometer Resolution), in Japan-China Bilateral Symposium on Advanced Manufacturing Engineering, 1996, pp. 155–158 [Google Scholar]
  46. G. Jager, Three-dimensional nanopositioning and nanomeasuring machine with a resolution of 0.1 nm, Optoelectronics, Instrum. data Proc. 46, 318–323 (2010) [Google Scholar]
  47. H. Haitjema, W.O. Pril, P. Schellekens, Development of a silicon-based nanoprobe system for 3-D measurements, Ann. CIRP 50, 65–368 (2001) [CrossRef] [Google Scholar]
  48. R.J. Hocken, D.L. Trumper, C. Wang, Dynamics and control of the UNCC/MIT sub-atomic measuring machine, CIRP Ann. Manuf. Technol. 50, 373–376 (2001) [CrossRef] [Google Scholar]
  49. K.C. Fan, Y.T. Fei, X.F. Yu, W.L. Wang, Y.J. Chen, Study of a noncontact type micro-CMM with arch-bridge and nanopositioning stages, Robot. Comput. Integrated Manuf. 23, 276–284 (2007) [CrossRef] [Google Scholar]
  50. M. Fujiwara, K. Takamasu, S. Ozono, Evaluation of properties of nano-CMM by thermal drift and tilt angle, in Proceedings XVII IMEKO World Congress, June 22–27, Dubrovnik, Croatia,, 2003, pp. 1794–1797 [Google Scholar]
  51. http://www.micromanufacturing.com/content/micronano-cmm-3-d-objects [Google Scholar]
  52. K.C. Fan, Y.T. Fei, X.F. Yu, Y.J. Chen, W.L. Wang, F. Chen, Y.S. Liu, Development of a low-cost micro-CMM for 3D micro/nano measurements, Meas. Sci. Technol. 17, 524–532 (2006) [CrossRef] [Google Scholar]
  53. G. Hermann, Design consideration for a modular high precision Coordinate Measuring Machine, ICM 2006, in IEEE International Conference on Mechatronics, July 3-5, Budapest, Hungary, 2006, pp. 161–165 [Google Scholar]
  54. T.A.M. Ruijl, Ultra Precision Coordinate Measuring Machine, Ph.D. thesis, Delft University of Technology, 2001 [Google Scholar]
  55. U. Brand, T. Kleine-Besten, H. Schwenke, Development of a special CMM for dimensional metrology on micro-system components, ASPE 15 (2000) [Google Scholar]
  56. M. Vermeulen, High-Precision 3D-Coordinate Measuring surface and high accuracy displacement sensors, Ph.D. thesis, Eindhoven University of Technology, 1999 [Google Scholar]
  57. E.C. Teague, The National Institute of Standards and Technology molecular measuring machine project: Metrology and precision engineering design, J. Vac. Sci. Technol. B 7, (1989) [Google Scholar]
  58. J. Kramar, J. Jun, W. Penzes, F. Scire, C. Teague, J. Villarrubia, E. Amatucci, D. Gilsinn, The molecular measuring machine, Precision Engineering Division (National Institute of Standards and Technology, Gaithersburg, USA) [Google Scholar]
  59. S. Cao, W. Habler-Grohne, U. Brand, S. Gao, R. Wilke, S. Buttgenbach, Three-dimensional measurement system with micro-tactile sensor, Proc. SPIE 4902 (2002) [Google Scholar]
  60. G. Dai, S. Bütefisch, F. Pohlenz, H.U. Danzebrink, A high precision micro/nano CMM using piezoresistive tactile probes, Meas. Sci. Technol. 20, 084001 (2009) [CrossRef] [Google Scholar]
  61. G. Dai, S. Bütefisch, F. Pohlenz, H.-U. Danzebrink, J. Fluegge, True 3D measurements of micro and nano structures, 56th International scientific colloquium, Ilmenau University of Technology, 12–16 September 2011 [Google Scholar]
  62. Z. Wu, T. Guo, J. Chen, X. Fu, X. Hu, The measurement of optical reflector with complex surface using nano-CMM, Proc. SPIE 8557, Optical Design and Testing V, November 26, 2012 [Google Scholar]
  63. G.X. Zhang, S.G. Liu, X.H. Ma, J.L. Wang, Y.Q. Wu, Z. Li, Towards the Intelligent CMM, CIRP Ann. Manuf. Technol. 51, 437–442 (2002) [CrossRef] [Google Scholar]
  64. U. Roy, Y. Xu, L. Wang, Development of an intelligent inspection planning system in an object oriented programming environment, Comput. Integrated Manuf. Syst. 7, 240–246 (1994) [CrossRef] [Google Scholar]
  65. C.H. Menq, H.T. Yau, C.L. Wong, An intelligent planning environment for automated dimensional inspection using coordinate measuring machines, ASME J. Eng. Ind. 114, 222–230 (1992) [Google Scholar]
  66. K.C. Fan, M.C. Leu, Intelligent planning of CAD-directed inspection for coordinate measuring machines, Comput. Integrat. Manuf. Syst. 11, 43–51 (1998) [CrossRef] [Google Scholar]
  67. A.J. Spyridi, A.A.G. Requicha, Automatic programming of coordinate measuring machines, in IEEE Proceedings of International Conference on Robotics and Automation, USA, 1994, pp. 1107–1112 [Google Scholar]
  68. Y. Fang, K. Chen, Z. Lin, Stereo vision and CMM-integrated intelligent inspection system in reverse engineering, Proc. SPIE 3521, Machine Vision Systems for Inspection and Metrology VII, October 6, 1998 [Google Scholar]
  69. B. Yuewei, W. Shuangyu, L. Kai, W. Xiaogang, A strategy to automatically planning measuring path with CMM offline’, in International Conference on Mechanic Automation and Control Engineering (MACE, 2010), Shanghai, China, pp. 3064–3067 [Google Scholar]
  70. S.N. Spitz, A.A.G. Requicha, Multiple-goals path planning for coordinate measuring machines, Proceedings of IEEE International Conference on Robotics & Automation 2000, San Francisco, CA, USA, pp. 2322–2327 [Google Scholar]
  71. C.G. Lu, D. Morton, P. Myle, M.H. Wu, An artificial intelligent (AI) inspection path management for multiple tasks measurement on co-ordinate measuring machine (CMM): an application of neural network technology, in Proceedings of IEEE Engineering Management Conference, 1995, pp. 353–357 [Google Scholar]
  72. H.A. ElMaraghy, P.H. Gu, J.G. Bollinger, Expert System for Inspection Planning, CIRP Ann. Manuf. Technol. 36, 85–89 (1987) [CrossRef] [Google Scholar]
  73. T.-S. Shen, J. Huang C.-H. Menq, Multiple-sensor integration for rapid and high-precision coordinate metrology, Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, September 19–23, Atlanta, USA, 1999 [Google Scholar]
  74. M. Nashman, B. Yoshimi, T.H. Hong, W.G. Rippey, M. Herman, A Unique Sensor Fusion System for Coordinate Measuring Machine Tasks, in Proceedings of the SPIE International Symposium on Intelligent Systems and Advanced Manufacturing, Session: Sensor Fusion and Decentralized Control in Autonomous Robotic Systems, Pittsburg, USA, 1997, pp. 145–156 [Google Scholar]
  75. M. Schulz, J. Gerhardt, R.D. Geckeler, C. Elster, Traceable multiple sensor system for absolute form measurement, Proc. SPIE 5878, 84–91 (2005) [Google Scholar]
  76. V.H. Chan, C. Bradley, G.W. Vickers, A multi-sensor approach for rapid digitization and data segmentation in reverse engineering, J. Manuf. Sci. Eng. 122, 725–733 (2000) [CrossRef] [Google Scholar]
  77. Q. Yuhong, W. Lei, X. Lusheng, H. Yuanqing, Vision Guided Automatically Measuring in Coordinate Metrology, Proc. SPIE 7130, 1–6 (2008) [Google Scholar]
  78. F. Li, A.P. Longstaff, S. Fletcher, A. Myers, Integrated tactile and optical measuring systems in 3D metrology, in Proceedings of Queen’s Diamond Jubilee computing and engineering annual researchers’ conference CEARC’ 2012, University of Huddersfield, Huddersfield, pp. 1-6 [Google Scholar]
  79. A. Weckenmann, X. Jiang, K.-D. Sommer, U. Neuschaefer-Rube, J. Seewig, L. Shaw, T. Estler, Multisensor data fusion in dimensional metrology, CIRP Ann. Manuf. Technol. 58, 701–721 (2009) [Google Scholar]
  80. Y. Hu, Q. Yang, P. Wei, Development of a novel virtual Coordinate Measuring Machine, in I2MTC- International Instrumentation and Measurement Technology Conference, Singapore, 5–7 May, 2009 [Google Scholar]
  81. B. Van Dorp, H. Haitjema, F. Delbressine, R. Bergmans, P. Schellekens, Virtual CMM using Monte Carlo methods based on frequency content of the error signal, Proc. SPIE 4401, 158–167 (2001) [CrossRef] [Google Scholar]
  82. Z. Yang, Y. Chen, Inspection Path Generation in Haptic Virtual CMM, Computer-Aided Design & Applications 2, 273–282 (2005) [CrossRef] [Google Scholar]
  83. Y. Wang, Y. Chen, Z. Nan, Y. Hu, Accessibility analysis for CMM inspection planning using haptic device, IEEE International Conference on Robotics and Biomimetics, China, 2006, pp. 1239–1243 [Google Scholar]
  84. Y. Hu, Q. Yang, X. Sun, Development and experimental validation of an Advanced Virtual Coordinate Measuring Machine, in Instrumentation and Measurement Technology Conference (I2MTC), IEEE 2011, Brunel University, UK, pp. 1–5 [Google Scholar]
  85. S. Tadahiko, S. Akira, S. Kaiji, H. Shinichiro, B.-C. Wang, Y. Cheng, Virtual Coordinate Measuring Machine - Evaluation of Dynamic Errors Caused by Inertial and Driving Forces, Nihon Kikai Gakkai Nenji Taikai Koen Ronbunshu 2, 181–182 (2000) [Google Scholar]
  86. H.J. Pahk, M. Burdekin, G.N. Peggs, Development of virtual coordinate measuring machines incorporating probe errors, Proc. Institut. Mech. Eng. B: J. Eng. Manuf. 212, 533–548 (1998) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.