Open Access
Int. J. Metrol. Qual. Eng.
Volume 4, Number 3, 2013
Page(s) 185 - 191
Published online 06 March 2014
  1. R.A. Johnson, Miller and Freund’s Probability and Statistics for Engineers, 5th edn. (Prentice-Hall, London, 1994)
  2. G. Barbato, E.M. Barini, G. Genta, R. Levi, Features and performances of some outlier detection methods, J. Appl. Stat. 38, 2133–2149 (2011) [CrossRef]
  3. V. Barnett, T. Lewis, Outliers in Statistical Data, 3rd edn. (John Wiley, Chichester, 1994)
  4. H.A. David, Order Statistics, 2nd edn. (John Wiley, New York, 1981)
  5. L.G. Johnson, Theory and Technique of Variation Research (Elsevier, Amsterdam, 1964)
  6. G. Genta, Methods for Uncertainty Evaluation in Measurement (VDM, Saarbrücken, 2010)
  7. JCGM 100:2008. Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM), BIPM-JCGM, Sèvres
  8. G. Barbato, G. Genta, A. Germak, R. Levi, G. Vicario, Treatment of experimental data with discordant observations: issues in empirical identification of distribution, Meas. Sci. Rev. 12, 133–140 (2012) [CrossRef]
  9. T.M. Porter, The Rise of Statistical Thinking 1820–1900 (Princeton University Press, Princeton, 1986)
  10. L.A.J. Quetelet, Du système social et des lois qui le régissent (Guillaumin & C., Paris, 1848)
  11. L.A.J. Quetelet, Physique sociale, ou essai sur le développement des facultés de l’homme (Muquardt, Bruxelles, 1869)
  12. F. Galton, The geometric mean, in vital and social statistics, Proc. Roy. Soc. 29, 365–367 (1879) [CrossRef]
  13. D. McAlister, The Law of the Geometric Mean, Proc. Roy. Soc. 29, 367–376 (1879) [CrossRef]
  14. E. Limpert, W.A. Stahel, M. Abbt, Log-normal Distributions across the Sciences: Keys and Clues, BioScience 51, 341–352 (2001) [CrossRef]
  15. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Applied Mathematics Series (National Bureau of Standards, Washington, 1964), Vol. 55
  16. W.F.R. Weldon, On certain correlated Variations in Carcinus moenas, Proc. Roy. Soc. 54, 318–329 (1893) [CrossRef]
  17. K. Pearson, Contributions to the mathematical theory of evolution, Philos. Trans. Roy. Soc. Lond. Ser. A 185, 71–110 (1894) [CrossRef]
  18. K. Pearson, Mathematical contributions to the theory of evolution, XIX: Second supplement to a memoir on skew variation, Philos. Trans. Roy. Soc. Lond. Ser. A 216, 429–457 (1916) [CrossRef]
  19. J.K. Ord, Families of Frequency Distributions (Griffin, London, 1972)
  20. W.P. Elderton, Frequency curves and correlation, 4th edn. (Cambridge University Press, Cambridge, 1953)
  21. A. Rhind, Tables to facilitate the computation of the probable errors of the chief constants of skew frequency distributions, Biometrika 7, 127–147 (1909) [CrossRef]
  22. G.J. Hahn, S.S. Shapiro, Statistical Models in Engineering (John Wiley, New York, 1958)
  23. N.L. Johnson, E. Nixon, D.E. Amos, Tables of percentage points of Pearson curves for given Formula , , expressed in standard measure, Biometrika 50, 459–471 (1963)
  24. O. Podladchikova, B. Lefebvre, V. Krasnoselskikh, V. Podladchikov, Classification of probability densities on the basis of Pearson’s curves with application to coronal heating simulations, Nonlin. Process. Geophys. 10, 323–333 (2003) [CrossRef]
  25. I.W. Burr, Cumulative frequency functions, Ann. Math. Stat. 13, 215–232 (1942) [CrossRef]
  26. R.N. Rodriguez, A guide to Burr Type XII distributions, Biometrika 64, 129–134 (1977) [CrossRef]
  27. D.R. Wingo, Maximum Likelihood Methods for Fitting the Burr Type XII Distribution to Multiply (Progressively) Censored Life Test Data, Metrika 40, 201–210 (1993) [CrossRef]
  28. F.Y. Edgeworth, On the Representation of Statistics by Mathematical Formulae, Part I, J. Roy. Statist. Soc. 61, 670–700 (1898)
  29. N.L. Johnson, System of Frequency Curves Generated by Methods of Translation, Biometrika 36, 149–178 (1949) [MathSciNet] [PubMed]
  30. D.J. DeBrota, R.S. Dittus, S.D. Roberts, J.R. Wilson, Visual interactive fitting of bounded Johnson distributions, Trans. Soc. Model. Simul. Int. – Simulation 52, 199–205 (1989) [CrossRef]
  31. J.D. Hill, R. Hill, R.L. Holder, Fitting Johnson Curves by Moments, Appl. Stat. 25, 190–192 (1976) [CrossRef]
  32. R.E. Wheeler, Quantile estimators of Johnson curve parameters, Biometrika 67, 725–728 (1980) [CrossRef]
  33. J.J. Swain, S. Venkatraman, J.R. Wilson, Least-Squares Estimation of Distribution Function in Johnson’s Translation System, J. Statist. Comput. Simul. 29, 271–297 (1988) [CrossRef]
  34. J. Bukaè, Fitting curves using symmetrical percentile points, Biometrika 59, 688–690 (1972)
  35. D.T. Mage, An Explicit Solution for Parameters Using Four Percentile Points, Technometrics 22, 247–251 (1980)
  36. J.F. Slifker, S.S. Shapiro, The Johnson System: Selection and Parameter Estimation, Technometrics 22, 239–246 (1980) [CrossRef]
  37. J.W. Tukey, The practical relationship between the common transformations of percentages of counts and of amounts, Technical Report. No. 36, Statistical Techniques Research Group (Princeton University, Princeton, 1960)
  38. J.J. Filliben, The Probability Plot Correlation Coefficient Test for Normality, Technometrics 17, 111–117 (1975) [CrossRef]
  39. NIST/SEMATECH 2013. e-Handbook of Statistical Methods,
  40. A. Tarsitano, Fitting the Generalized Lambda Distribution to Income Data. COMPSTAT 2004Proceedings in Computational Statistics 16th Symposium, Prague, 2004
  41. J.S. Ramberg, B.W. Schmeiser, An approximate method for generating symmetric random variables, Commun. Assoc. Comput. Mach. 15, 987–990 (1972)
  42. J.S. Ramberg, B.W. Schmeiser, An approximate method for generating asymmetric random variables, Commun. Assoc. Comput. Mach. 17, 78–82 (1974)
  43. S. Pal, Evaluation of Non-normal Process Capability Indices using Generalized Lambda Distribution, Qual. Eng. 17, 77–85 (2005) [CrossRef]
  44. B.W. Silverman, Using Kernel Density Estimates to Investigate Multimodality, J. Roy. Statist. Soc. Ser. B 43, 97–99 (1981)
  45. B. Efron, Bootstrap methods: Another look at the jackknife, Ann. Statist. 7, 1–26 (1979) [CrossRef] [MathSciNet]
  46. R. Schmitt, P. Fritz, J. Lose, Bootstrap approach for conformance assessment of measurement, Int. J. Metrol. Qual. Eng. 2, 19–24 (2011) [CrossRef] [EDP Sciences]
  47. N.R. Draper, H. Smith, Applied Regression Analysis (John Wiley, New York, 1966)
  48. F. Bookstein, Fitting conic sections to scattered data, Comput. Graph. Image Process. 9, 56–71 (1987) [CrossRef]
  49. P. O’Leary, P. Zsombor-Murray, Direct and specific least-square fitting of hyperbolae and ellipses, J. Electron. Imag. 13, 492–503 (2004) [CrossRef]
  50. W.J. Youden, Enduring values, Technometrics 14, 1–11 (1972) [CrossRef]
  51. M.H. DeGroot, A Conversation with George Box, Stat. Sci. 2, 239–258 (1987) [CrossRef]
  52. J.W. Tukey, The Future of Data Analysis, Ann. Math. Statist. 33, 1–47 (1962) [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.