Open Access
Int. J. Metrol. Qual. Eng.
Volume 4, Number 3, 2013
Page(s) 193 - 200
Published online 06 March 2014
  1. G.N. Abenhaim, A. Desrochers, A. Tahan, Nonrigid parts’ specification and inspection methods: notions, challenges, and recent advancements, Int. J. Adv. Manuf. Technol. 63, 741–752 (2012) [CrossRef]
  2. H. Radvar-Esfahlan, S.A. Tahan, Nonrigid geometric inspection using intrinsic geometry, Proceedings of The Canadian Society for Mechanical Engineering Forum 2010, Victoria, British Columbia (2010)
  3. H. Radvar-Esfahlan, S.A. Tahan, Nonrigid Geometric Metrology using Generalized Numerical Inspection Fixtures, Precis. Eng. 36, 1–9 (2011) [CrossRef]
  4. H. Radvar-Esfahlan, S.A. Tahan, Distance preserving dimensionality reduction methods and their applications in geometric inspection of nonrigid parts, 5th SASTECH Conference, Iran, 2011
  5. H. Radvar-Esfahlan, S.-A. Tahan, Robust generalized numerical inspection fixture for the metrology of compliant mechanical parts, Int. J. Adv. Manuf. Technol. 70, 1101–1112 (2013) [CrossRef]
  6. I. Jolliffe, Principal Component Analysis (Wiley Online Library, 2005)
  7. J.A. Lee, M. Verleysen, Nonlinear Dimensionality Reduction (Springer, 2007)
  8. J.C. Gower, Some distance properties of latent root and vector methods used in multivariate analysis, Biometrika 53, 325–338 (1966) [CrossRef]
  9. W.S. Torgerson, Multidimensional scaling: I. Theory and method, Psychometrika 17, 401–419 (1952) [CrossRef]
  10. G. Young, A.S. Householder, Discussion of a set of points in terms of their mutual distances, Psychometrika 3, 19–22 (1938) [CrossRef]
  11. D. Burago, Y. Burago, S. Ivanov, A course in metric geometry (American Mathematical Society, 2001)
  12. J. De Leeuw, Applications of convex analysis to multidimensional scaling (Department of Statistics Papers, Department of Statistics, UCLA, 2005)
  13. I. Borg, P.J.F. Groenen, Modern multidimensional scaling: Theory and applications (Springer Verlag, 2005)
  14. J.B. Tenenbaum, V. De Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science 290, 2319–2323 (2000) [CrossRef] [PubMed]
  15. E. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1, 269–271 (1959) [CrossRef] [MathSciNet]
  16. K.Q. Weinberger, L.K. Saul, Unsupervised learning of image manifolds by semidefinite programming, in Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, 2004, Vol. 2, pp. II-988–II-995
  17. L. Vandenberghe, S. Boyd, Semidefinite programming, SIAM Rev. 38, 49–95 (1996) [CrossRef] [MathSciNet]
  18. L. Van der Maaten, E. Postma, H. Van den Herik, Dimensionality reduction: A comparative review, J. Mach. Learn. Res. 10, 1–41 (2009)
  19. J.W. Sammon Jr., A nonlinear mapping for data structure analysis, Comput. IEEE Trans. 100, 401–409 (1969) [NASA ADS] [CrossRef]
  20. P. Demartines, J. Hérault, Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets, Neural Netw. IEEE Trans. 8, 148–154 (1997) [CrossRef]
  21. A. Gersho, R.M. Gray, Vector Quantization and Signal Compression (Kluwer Academic Pub., 1992), Vol. 159
  22. J.A. Lee, A. Lendasse, M. Verleysen, Curvilinear distance analysis versus isomap, in Proceedings of ESANN, 2002, pp. 185–192
  23. S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science 290, 2323–2326 (2000) [NASA ADS] [CrossRef] [PubMed]
  24. C.J. de Medeiros, J.A.F. Costa, L.A. Silva, A comparison of dimensionality reduction methods using topology preservation indexes, in Intelligent Data Engineering and Automated Learning-IDEAL 2011 (Springer, 2011), pp. 437–445
  25. H. Yin, Nonlinear dimensionality reduction and data visualization: a review, Int. J. Automat. Comput. 4, 294–303 (2007) [CrossRef]
  26. J. Chen, Y. Liu, Locally linear embedding: a survey, Artif. Intell. Rev. 36, 29–48 (2011) [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.