Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 4, Number 3, 2013
Page(s) 193 - 200
DOI https://doi.org/10.1051/ijmqe/2013051
Published online 06 March 2014
  1. G.N. Abenhaim, A. Desrochers, A. Tahan, Nonrigid parts’ specification and inspection methods: notions, challenges, and recent advancements, Int. J. Adv. Manuf. Technol. 63, 741–752 (2012) [CrossRef] [Google Scholar]
  2. H. Radvar-Esfahlan, S.A. Tahan, Nonrigid geometric inspection using intrinsic geometry, Proceedings of The Canadian Society for Mechanical Engineering Forum 2010, Victoria, British Columbia (2010) [Google Scholar]
  3. H. Radvar-Esfahlan, S.A. Tahan, Nonrigid Geometric Metrology using Generalized Numerical Inspection Fixtures, Precis. Eng. 36, 1–9 (2011) [CrossRef] [Google Scholar]
  4. H. Radvar-Esfahlan, S.A. Tahan, Distance preserving dimensionality reduction methods and their applications in geometric inspection of nonrigid parts, 5th SASTECH Conference, Iran, 2011 [Google Scholar]
  5. H. Radvar-Esfahlan, S.-A. Tahan, Robust generalized numerical inspection fixture for the metrology of compliant mechanical parts, Int. J. Adv. Manuf. Technol. 70, 1101–1112 (2013) [CrossRef] [Google Scholar]
  6. I. Jolliffe, Principal Component Analysis (Wiley Online Library, 2005) [Google Scholar]
  7. J.A. Lee, M. Verleysen, Nonlinear Dimensionality Reduction (Springer, 2007) [Google Scholar]
  8. J.C. Gower, Some distance properties of latent root and vector methods used in multivariate analysis, Biometrika 53, 325–338 (1966) [CrossRef] [Google Scholar]
  9. W.S. Torgerson, Multidimensional scaling: I. Theory and method, Psychometrika 17, 401–419 (1952) [CrossRef] [Google Scholar]
  10. G. Young, A.S. Householder, Discussion of a set of points in terms of their mutual distances, Psychometrika 3, 19–22 (1938) [CrossRef] [Google Scholar]
  11. D. Burago, Y. Burago, S. Ivanov, A course in metric geometry (American Mathematical Society, 2001) [Google Scholar]
  12. J. De Leeuw, Applications of convex analysis to multidimensional scaling (Department of Statistics Papers, Department of Statistics, UCLA, 2005) [Google Scholar]
  13. I. Borg, P.J.F. Groenen, Modern multidimensional scaling: Theory and applications (Springer Verlag, 2005) [Google Scholar]
  14. J.B. Tenenbaum, V. De Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science 290, 2319–2323 (2000) [CrossRef] [PubMed] [Google Scholar]
  15. E. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1, 269–271 (1959) [CrossRef] [MathSciNet] [Google Scholar]
  16. K.Q. Weinberger, L.K. Saul, Unsupervised learning of image manifolds by semidefinite programming, in Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, 2004, Vol. 2, pp. II-988–II-995 [Google Scholar]
  17. L. Vandenberghe, S. Boyd, Semidefinite programming, SIAM Rev. 38, 49–95 (1996) [CrossRef] [MathSciNet] [Google Scholar]
  18. L. Van der Maaten, E. Postma, H. Van den Herik, Dimensionality reduction: A comparative review, J. Mach. Learn. Res. 10, 1–41 (2009) [Google Scholar]
  19. J.W. Sammon Jr., A nonlinear mapping for data structure analysis, Comput. IEEE Trans. 100, 401–409 (1969) [NASA ADS] [CrossRef] [Google Scholar]
  20. P. Demartines, J. Hérault, Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets, Neural Netw. IEEE Trans. 8, 148–154 (1997) [CrossRef] [Google Scholar]
  21. A. Gersho, R.M. Gray, Vector Quantization and Signal Compression (Kluwer Academic Pub., 1992), Vol. 159 [Google Scholar]
  22. J.A. Lee, A. Lendasse, M. Verleysen, Curvilinear distance analysis versus isomap, in Proceedings of ESANN, 2002, pp. 185–192 [Google Scholar]
  23. S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science 290, 2323–2326 (2000) [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  24. C.J. de Medeiros, J.A.F. Costa, L.A. Silva, A comparison of dimensionality reduction methods using topology preservation indexes, in Intelligent Data Engineering and Automated Learning-IDEAL 2011 (Springer, 2011), pp. 437–445 [Google Scholar]
  25. H. Yin, Nonlinear dimensionality reduction and data visualization: a review, Int. J. Automat. Comput. 4, 294–303 (2007) [CrossRef] [Google Scholar]
  26. J. Chen, Y. Liu, Locally linear embedding: a survey, Artif. Intell. Rev. 36, 29–48 (2011) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.