Open Access
Int. J. Metrol. Qual. Eng.
Volume 15, 2024
Article Number 3
Number of page(s) 10
Published online 08 March 2024
  1. H. Gao, W. Wang, T. Shang, L. Zhai, Series arc fault detection method based on wavelet spectral entropy, New Technol. Electr. Eng. 41, 63–71 (2022) [Google Scholar]
  2. W. Wang, B. Xu, Z. Sun, D. Liang, Differential voltage detection method for arc faults in low voltage distribution networks, Chin. J. Electr. Eng. 1–14 (2023) [Google Scholar]
  3. H. Zhao, H. Qin, K. Liu, L. Zhu, Series fault arc detection method based on correlation theory and zero rest feature fusion, J. Instrum. 41, 218–228 (2020) [Google Scholar]
  4. S. Ma, J. Bao, Z. Cai, C. Meng, Arc fault identification method based on information dimension and zero rest time, Chin. J. Electr. Eng. 36, 2572–2579 (2016) [Google Scholar]
  5. J. Cai, Research on fault arc identification method based on the probability distribution of 5th harmonic components[D]. Shenyang University of Technology, 2017 [Google Scholar]
  6. R. Ding, Y. Chen, L. Sun, Q. Cheng. Z. Liu, AC series arc fault identification based on neighbouring wave current difference and randomness, Power System Protection and Control. 51, 169–178 (2023) [Google Scholar]
  7. Y. Wang, Q. Wei, L. Ge, F. Niu, K. Li, L. Zhang, Series AC arc fault detection method based on high frequency component of arc current, Power Autom. Equip. 37, 191–197 (2017) [Google Scholar]
  8. Y. Wang, M. Tian, H. Xi, Y. Ban, L. Hou, K. Li, Series fault arc detection method based on current similarity and high frequency energy, Electr. Measur. Instrum. 59, 158–165 (2022) [Google Scholar]
  9. R. Cui, Y. Wang, C. Wang, Y. Li, F. Li, A multi-information fusion based arc identification method for series faults in aviation lines, J. Electrotechnol. 34, 118–125 (2019) [Google Scholar]
  10. Q. Yu, G. Huang, Y. Yang, Absolute value activated deep neural network for series fault arc detection, Comput. Appl. 39, 54–59 (2019) [Google Scholar]
  11. T. Zhang, C. Zhang, K. Yang, Arc fault detection system based on asymmetric convolutional neural network, J. Electr. Measur. Instrum. 36, 116–125 (2022) [Google Scholar]
  12. Y. Wang, Research on the dynamic characteristics and fault detection method of low-voltage AC arc [D]. Shanghai Jiao Tong University, 2020 [Google Scholar]
  13. Y. Yang, L. Huang, P. Li, L. Shen, Z. Lv, S. Yang, Arc fault detection method based on multi-dimensional feature extraction, J. Electr. Measur. Instrum. 35, 107–115 (2021) [Google Scholar]
  14. R. Cui, S. Wang, Aviation series fault arc detection based on multidimensional feature quantity, Sci. Technol. Eng. 17, 38–43 (2017) [Google Scholar]
  15. T. Shang, W. Wang, J Peng, B. Xu, H. Gao, G. Zhai, Series arc fault identification based on complete ensemble empirical mode decomposition with adaotive noise and convolution neural network, Int. J. Metrol. Qual. Eng. 13, 11 (2022) [CrossRef] [EDP Sciences] [Google Scholar]
  16. R. Chu, R. Zhang, K. Yang, C. Xiao, Series arc fault detection method based on multilayer convolutional neural network, Power Grid Technol. 44, 4792–4798 (2020) [Google Scholar]
  17. L. Wang, S. Jiang, S. Jiang, A feature selection method via analysis of relevance, redundancy, and interaction, Exp. Syst. Appl. 183, 115365 (2021) [CrossRef] [Google Scholar]
  18. J. Liu, J. Liu, H. Zhao, Z. Wu, X. Liu, L. Wu, Short-term photovoltaic output prediction based on DKDE with improved m-RMR feature selection, Power Syst. Autom. 45, 13–21 (2021) [Google Scholar]
  19. B. Xue, K. Wen, W. Li, Z. Zhang, Y. Tang, Research on household load type identification method based on feature evaluation and screening by combining ReliefF and mutual information, Electr. Measur. Instrum. 57, 38–45 (2020) [Google Scholar]
  20. Y. Li, Research on multi-feature aviation arc fault detection algorithm based on pattern recognition [D]. Hebei University of Technology, 2020 [Google Scholar]
  21. J. Xu, X. Chen, Y. Dong, J. Yang, Random forest DDoS attack detection with fusion feature selection, Comput. Appl. 21, 1–8 (2023) [CrossRef] [Google Scholar]
  22. P. Li, X. Dong, Q. Meng, J. Ynag, A transient stability assessment method for power systems based on Fisher score feature selection, Power Autom. Equip. 22, 1–13 (2023) [Google Scholar]
  23. H. Che, F. Lv, Z. Xiang, Defect recognition based on sequential forward floating search with time-frequency preferred features, J. Zhejiang Univ. 45, 2235–2239 (2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.