Open Access
Int. J. Metrol. Qual. Eng.
Volume 14, 2023
Article Number 12
Number of page(s) 13
Published online 06 September 2023
  1. P. Fangyu, L. Nie, Y. Bai, X. Wang, Geometric errors measurement for coordinate measuring machines, IOP Conf. Ser.: Earth Environ. Sci. 81, 28–30 (2017) [Google Scholar]
  2. J. Stone, B. Muralikrishnan, C. Sahay,Geometric effects when measuring small holes with micro contact probes, J. Res. Natl. Inst. Stand. Technol. 116, 573–587 (2011) [CrossRef] [Google Scholar]
  3. L. Laaouina, A. Nafi, A. Mouchtachi, Application of CMM separation method for identifying absolute values of probe errors and machine errors, Int. Conf. Eng. & MIS 2016, Agadir, Morocco [Google Scholar]
  4. S. Branko, B. Acko, S. Havrlisan, I. Matin, B. Savkovic, Investigation of the effect of temperature and other significant factors on systematic error and measurement uncertainty in CMM measurements by applying design of experiments, Measurement 158, 107692 (2020) [CrossRef] [Google Scholar]
  5. M. Mussatayev, M. Huang, S. Beshleyev, Thermal influences as an uncertainty contributor of the coordinate measuring machine (CMM), Int. J. Adv. Manuf. Technol. 111, 537–547 (2020) [CrossRef] [Google Scholar]
  6. M. Djezoul, E. Pairel, H. Favreliere, Influence of the probing definition on the flatness measurement, Int. J. Metrol. Qual. Eng. 9, 15 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  7. A.B. Forbes, Uncertainties associated with position, size and shape for point cloud data, J. Phys.: Conf. Ser. 1065, 142023 (2018) [CrossRef] [Google Scholar]
  8. A.B. Forbes, Approximate models of CMM behaviour and point cloud uncertainties, Meas. Sens. 18, 100304 (2021) [CrossRef] [Google Scholar]
  9. V.A. Rosenda, C. Costa, Souza, H.L. Costa, A. P. Piratelli-Filho, Simplified model to estimate uncertainty in CMM, J. Braz. Soc. Mech. Sci. Eng. 37, 411–521 (2015) [CrossRef] [Google Scholar]
  10. P. Wojciech, Uncertainty of coordinate measurement of geometrical deviations, Procedia CIRP 75, 361–366 (2018) [CrossRef] [Google Scholar]
  11. J. Wladyslaw, P. Wojcich, First coordinate measurement uncertainty evaluation software fully consistent with the GPS Philosophy, Procedia CIRP 10, 317–322 (2013) [CrossRef] [Google Scholar]
  12. International Organization for Standardization ISO 1101: 2017–02, Geometrical product specifications (GPS) − geometrical tolerancing − tolerances of form, orientation, location and run-out [Google Scholar]
  13. R. Rajamani, R. Vignesh, B. Mouliprasanth, Evaluation of uncertainty in angle measurement performed on a coordinate measuring machine, Proceedings of the First International Conference on Combinatorial and Optimization, ICCAP 2021, December 7–8 2021, Chennai, India [Google Scholar]
  14. G. Moona, V. Kumar, M. Jewariya, H. Kumar, R. Sharma, Measurement uncertainty assessment of articulated arm coordinate measuring machine for length measurement errors using Monte Carlo simulation, Int. J. Adv. Manuf. Technol. 119, 5903–5916 (2022) [CrossRef] [Google Scholar]
  15. JCGM 100:2008, Evaluation of measurement data − guide to the expression of uncertainty in measurement [Google Scholar]
  16. JCGM 101:2008, Evaluation of measurement data − supplement 1 to the guide to the expression of uncertainty in measurement − propagation of distributions using a Monte Carlo method [Google Scholar]
  17. A. Jalid, S. Hariri, A. El Gharad, J.P. Senelaer, Comparison of the GUM and Monte Carlo methods on the flatness uncertainty estimation in coordinate measuring machine, Int. J. Metrol. Qual. Eng. 7, 302 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  18. A. Jalid, S. Hariri, N.E. Laghzale, Influence of sample size on flatness estimation and uncertainty in three-dimensional measurement, Int. J. Metrol. Qual. Eng. 6, 102 (2015) [CrossRef] [EDP Sciences] [Google Scholar]
  19. ISO/IEC GUIDE 98–4:2012, Uncertainty of measurement − Part 4: role of measurement uncertainty in conformity assessment [Google Scholar]
  20. ISO 17025:2017 General Requirements for Competence of Testing and Calibration Laboratories, International Organization for Standardization [Google Scholar]
  21. A.B. Forbes, Sensitivity analysis for Gaussian associated features, Appl. Sci. 12, 2808 (2022) [CrossRef] [Google Scholar]
  22. A.B. Forbes, Verification of sensitivity analysis method of measurement uncertainty evaluation, Meas. Sens. 18, 100274 (2021) [CrossRef] [Google Scholar]
  23. K. Bahassou, A. Salih, A. Jalid, M. Oubrek, Modeling of the correction matrix for the calibration of measuring machines, Int. J. Mech. Eng. Tech. 8, 862–870 (2017) [Google Scholar]
  24. K. Bahassou Salih, M. Oubrek, A. Jalid, Measurement uncertainty on the correction matrix of the coordinate measuring machine, Int. J. Adv. Res. Eng. Tech. 10, 669–676 (2019) [Google Scholar]
  25. International Organization for Standardization ISO 10360-2:2009, CMMs Used for Measuring Linear Dimensions [Google Scholar]
  26. S. Almira, H. Bašić, Proficiency testing and interlaboratory comparisons in laboratory for dimensional measurement, J. Trends Dev. Mach. Assoc. Technol. 16, 115–118 (2012) [Google Scholar]
  27. International Organization for Standardization ISO 13528:2015, Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparison [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.