Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 14, 2023
Article Number 13
Number of page(s) 13
DOI https://doi.org/10.1051/ijmqe/2023011
Published online 08 September 2023
  1. B. Edlén, The refractive index of air, Metrologia. 2, 71–80 (1966) [CrossRef] [Google Scholar]
  2. G. Bönsch, E. Potulski, Measurement of the refractive index of air and comparison with modified Edlén’s formulae, Metrologia. 35, 133–139 (1998) [CrossRef] [Google Scholar]
  3. K.D. Froome, Precision distance measurement based on the velocity of light, Sci. Prog. 59, 199–223 (1971) [Google Scholar]
  4. P. Pérez Muñoz, J.A. Albajez García, J. Santolaria Mazo, Analysis of the initial thermal stabilization and air turbulences effects on laser tracker measurements, J. Manuf. Syst. 41, 277–286 (2016) [CrossRef] [Google Scholar]
  5. M. de Podesta, S. Bell, R. Underwood, Air temperature sensors: dependence of radiative errors on sensor diameter in precision metrology and meteorology, Metrologia. 55, 229–244 (2018) [CrossRef] [Google Scholar]
  6. T. Hieta, M. Merimaa, Spectroscopic measurement of air temperature, Int. J. Thermophys. 31, 1710–1718 (2010) [CrossRef] [Google Scholar]
  7. R. Underwood, T. Gardiner, A. Finlayson, J. Few, J. Wilkinson,S. Bell, J. Merrison, J.J. Iverson, M. de Podesta, A combined non-contact acoustic thermometer and infrared hygrometer for atmospheric measurements, Meteorol. Appl. 22, 830–835 (2015) [CrossRef] [Google Scholar]
  8. R. Underwood, T. Gardiner, A. Finlayson, S. Bell, M. de Podesta, An improved non-contact thermometer and hygrometer with rapid response, Metrologia. 54, S9–S15 (2017) [CrossRef] [Google Scholar]
  9. V. Korpelainen, A. Lassila, Acoustic method for determination of the effective temperature and refractive index of air in accurate length interferometry, Opt. Eng. 43, 2400–2409 (2004) [CrossRef] [Google Scholar]
  10. M. Pisani, M. Astrua, M. Zucco, An acoustic thermometer for air refractive index estimation in long distance interferometric measurements, Metrologia. 55, 67–74 (2018) [CrossRef] [Google Scholar]
  11. M. Pisani, M. Astrua, M. Zucco. Improved acoustic thermometry for long-distance temperature measurements, Sensors. 23, 1638 (2023) [CrossRef] [Google Scholar]
  12. R = kNA where k is Boltzmann’s constant (1.380 649×10−23 J/K) and NA the Avogadro constant (6.022 140 76×1023 mol−1). See the NIST fundamental constants database https://physics.nist.gov/cuu/Constants/ [Google Scholar]
  13. J. Lovell-Smith, An expression for the uncertainty in the water vapour enhancement factor for moist air, Metrologia . 44, L49–L52 (2007) [CrossRef] [Google Scholar]
  14. A.H. Harvey P.H. Huang. First-Principles Calculation of the Air-Water Second Virial Coefficient, Int. J. Theromphys. 28, 556–565 (2007) [CrossRef] [Google Scholar]
  15. G. Garberoglio, P. Jankowski, K. Szalewicz, A.H. Harvey, Fully quantum calculation of the second and third virial coefficients of water and its isotopologues from ab initio potentials, Faraday Discuss. 212, 467–497 (2018) [CrossRef] [PubMed] [Google Scholar]
  16. O. Cramer, The variation of the specific heat ratio and the speed of sound in air with temperature, pressure humidity and CO _2 concentration, J. Acoust. Soc. Am. 93, 2510–2516 (1993) [CrossRef] [Google Scholar]
  17. G.S.K. Wong, Speed of sound in standard air, J. Acoust. Soc. Am. 79, 1359–1366 (1986) [CrossRef] [Google Scholar]
  18. G.S.K. Wong, Comments on The variation of the specific heat ratio and the speed of sound in air with temperature, pressure, humidity, and CO2 concentration, [J. Acoust. Soc. Am. 93, 2510–2516 (1993)], J. Acoust. Soc. Am. 97, 3177–3179 (1995) [CrossRef] [Google Scholar]
  19. M. O’Donnell, E.T. Jaynes, J.G. Miller. General relationship between ultrasonic attenuation and dispersion, J. Acoust. Soc. Am. 63, 1935–1937 (1978). [CrossRef] [Google Scholar]
  20. C.L. Morfey, G.P. Howell, Speed of sound in air as a function of frequency and humidity, J. Acoust. Soc. Am. 68, 1525–1527 (1980) [CrossRef] [Google Scholar]
  21. A.J. Zuckerwar, Handbook of the speed of sound in real gases, Volume 3: Speed of Sound in Air, (Academic Press Inc., 2003) [Google Scholar]
  22. R.M. Gavioso, M. Fogliati, D. Madonna Ripa, Modelling Uncertainty of Speed of Sound in Humid Air. Oral presentation. Twenty-first Symposium on Thermophysical Properties, Boulder, Colorado, USA 20–25 June 2021 [Google Scholar]
  23. J. Guillory, D. Truong, J.-P. Wallerand, Uncertainty assessment of a prototype of multilateration coordinate measurement system, Precis. Eng. 66, 496–506 (2020) [CrossRef] [Google Scholar]
  24. J.C. Jackson, R. Summan, G.I. Dobie, S.M. Whiteley, S.G. Pierce, G. Hayward, Time-of-flight measurement techniques for airborne ultrasonic ranging, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 60, 343–355 (2013) [CrossRef] [PubMed] [Google Scholar]
  25. M. Dobosz, M. Ciuba, Ultrasonic measurement of air temperature along the axis of a laser beam during interferometric measurement of length, Meas. Sci. Technol. 31, 045202 (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.