Open Access
Int. J. Metrol. Qual. Eng.
Volume 14, 2023
Article Number 10
Number of page(s) 9
Published online 18 July 2023
  1. China Consumers Association. Analysis of complaints received by the National Consumers' Association in 2021. 2022- 01-28. Available at [Google Scholar]
  2. X. Zhu, Z. Du, X. Jin, Z. Chen, Fault diagnosis based operation risk evaluation for air conditioning systems in data centers, Build. Environ. 163, 1–14 (2019) [Google Scholar]
  3. A. Qiu, Z. Yan, Q. Deng, J. Liu, L. Shang, J. Wu, Modeling of HVAC systems for fault diagnosis, IEEE Access. 8, 146248–146262 (2020) [CrossRef] [Google Scholar]
  4. A. Ranade, G. Provan, A. El-Din Mady, D. O' Sullivan, A computationally efficient method for fault diagnosis of fan -coil unit terminals in building heating ventilation and air conditioning systems, J. Build. Eng. 27, 1–13 ( 2020) [Google Scholar]
  5. Haitao Wang, Youming Chen, A robust fault detection and diagnosis strategy for multiple faults of VAV air handling units, Energy Build. 127, 442–451 (2016) [CrossRef] [Google Scholar]
  6. H. Yang, S. Cho, C.-S. Tae, M. Zaheeruddin, Sequential rule based algorithms for temperature sensor fault detection in air handling units, Energy Convers. Manag. 49, 2291–2306 (2008) [CrossRef] [Google Scholar]
  7. J. Schein, S.T. Bushby, N.S. Castro, J.M. House, A rule-based fault detection method for air handling units, Energy Build. 38, 1485–1492 (2006) [Google Scholar]
  8. W. Tun, J. Kwok-Wai Wong, S.-H. Ling, Hybrid random forest and support vector machine modeling for HVAC fault detection and diagnosis, Sensors 21, 1–15 (2021) [Google Scholar]
  9. K. Sun, G. Li, H. Chen, J. Liu, J. Li, W. Hu, A novel efficient SVM-based fault diagnosis method for multi-split air conditioning system's refrigerant charge fault amount, Appl. Thermal Eng. 108, 989–998 (2016) [CrossRef] [Google Scholar]
  10. H. Zhang, H. Chen, Y. Guo, J. Wanga, G. Li, L. Shen, Sensor fault detection and diagnosis for a water source heat pump air-conditioning system based on PCA and preprocessed by combined clustering, Appl. Thermal Eng. 160, 1–8 (2019) [Google Scholar]
  11. Y. Guo, G. Li, H. Chen, Y. Hu, H. Li, L. Xing, W. Hu, An enhanced PCA method with Savitzky-Golay method for VRF system sensor fault detection and diagnosis, Energy Build. 142, 167–178 (2017) [CrossRef] [Google Scholar]
  12. H. Shahnazari, P. Mhaskar, J.M. House, T.I. Salsbury, Modeling and fault diagnosis design for HVAC systems using recurrent neural networks, Comput. Chem. Eng. 126, 189–203 (2019) [CrossRef] [Google Scholar]
  13. H. Liao, W. Cai, F. Cheng, S. Dubey, P. Balachander Rajesh, An online data-driven fault diagnosis method for air handling units by rule and convolutional neural networks, Sensors 21, 1–14 (2021) [Google Scholar]
  14. P. Cui, X. Luo, X. Li et al., Research on the enhancement of machine fault evaluation model based on data-driven, Int. J. Metrol. Qual. Eng. 13, 13 (2022) [CrossRef] [EDP Sciences] [Google Scholar]
  15. B. Cai, L. Huang, M. Xie, Bayesian networks in fault diagnosis, IEEE Trans. Ind. Inf. 3, 2227–2240 (2017) [CrossRef] [Google Scholar]
  16. M. Hu, H. Chen, L. Shen, G. Li, Y. Guo, H. Li, J. Li, W. Hu, A machine learning Bayesian network for refrigerant charge faults of variable refrigerant flow air conditioning system, Energy Build. 158, 668–676 (2018) [CrossRef] [Google Scholar]
  17. K. Verbert, R. Babuška, B.D. Schutter, Combining knowledge and historical data for system-level fault diagnosis of HVAC systems, Eng. Appl. Artific. Intell. 59, 260–273 (2018) [Google Scholar]
  18. Y. Zhao, J. Wen, F. Xiao, X. Yang, S. Wang, Diagnostic Bayesian networks for diagnosing air handling units faults − Part I: Faults in dampers, fans, filters and sensors, Appl. Thermal Eng. 111, 1272–1286 (2017) [CrossRef] [Google Scholar]
  19. D. Dey, B. Dong, A probabilistic approach to diagnose faults of air handling units in buildings, Energy Build. 130, 177–187 (2016) [CrossRef] [Google Scholar]
  20. Y. Xiao, H. Zhang, W. Zhou, F. Wan, Z. Meng, Research on the fault diagnosis method for high-speed loom using rough set and Bayesian network, J. Intell. Fuzzy Syst. 39, 1147–1161 (2020) [CrossRef] [Google Scholar]
  21. Y. Hou, A. Yang, W. Guo, E. Zheng, Q. Xiao, Z. Guo, Z. Huang, Bearing fault diagnosis under small data set condition: a Bayesian network method with transfer learning for parameter estimation, IEEE Access. 10, 35768–35783 (2022) [CrossRef] [Google Scholar]
  22. Z. Wang, L. Wang, K. Liang, Y. Tan, Enhanced chiller fault detection using Bayesian network and principal component analysis, Appl. Thermal Eng. 141, 898–905 (2018) [CrossRef] [Google Scholar]
  23. R. Di, X. Gao, Z. Guo, Learning Bayesian network parameters under new monotonic constraints, J. Syst. Eng. Electr. 28, 1248–1255 (2017) [CrossRef] [Google Scholar]
  24. Z. Li, Two-color illustration of air conditioner maintenance from starter to master (Chemical Industry Press, 2012) [Google Scholar]
  25. D. Kim, S. Kang, J. Yoo, D.-K. Kim, B. Youn, A study on the quantitative single and dual fault diagnosis of residential split type air conditioners in static operation using support vector machine method, Int. J. Refrig. 131, 206–217 (2021) [CrossRef] [Google Scholar]
  26. Z. Li, B. Wang, X. Li, W. Shi, S. Zhang, Y. Liu, Simulation of recombined household multi-split variable refrigerant flow system with split-type air conditioners, Appl. Thermal Eng. 117, 343–354 (2017) [CrossRef] [Google Scholar]
  27. C. Liu, J. Sun, F. Wang, S. Ning, G. Xu, Bayesian network method for fault diagnosis of civil aircraft environment control system, Proc. Inst. Mech. Eng. I 234, 662–674 (2020) [Google Scholar]
  28. N. Silva, J.C. Cunha, M. Vieira, A field study on root cause analysis of defects in space software, Reliab. Eng. Syst. Saf. 158, 213–229 (2017) [CrossRef] [Google Scholar]
  29. L. Zhang, H. Guo, Introduction to Bayesian Networks (Science Press, 2006) [Google Scholar]
  30. Z. Liao, L. Song, P. Chen, S. Zuo, An automatic filtering method based on an improved genetic algorithm—with application to rolling bearing fault signal extraction, IEEE Sens J. 17, 6340–6349 (2017) [CrossRef] [Google Scholar]
  31. X. Li, X. Wang, Y. Fang, Cause-chain analysis of coal-mine gas explosion accident based on Bayesian network model, Clust. Comput. 22, 1549–1557 (2019) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.