Open Access
Issue |
Int. J. Metrol. Qual. Eng.
Volume 14, 2023
|
|
---|---|---|
Article Number | 9 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/ijmqe/2023004 | |
Published online | 14 July 2023 |
- C. Hou, C. Li, X. Shan, C. Yang, R. Song, T. Xie, A broadband piezo-electromagnetic hybrid energy harvester under combined vortex-induced and base excitations, Mech. Syst. Signal Process. 171, 108963 (2022) [CrossRef] [Google Scholar]
- A.G.A. Muthalif, M. Hafizh, J. Renno, M.R. Paurobally, A hybrid piezoelectric-electromagnetic energy harvester from vortex-induced vibrations in fluid-flow; the influence of boundary condition in tuning the harvester, Energy Convers. Manag. 256, 115371 (2022) [CrossRef] [Google Scholar]
- J. Bjurström, F. Ohlsson, A. Vikerfors, C.Rusu, C. Johansson, Tunable spring balanced magnetic energy harvester for low frequencies and small displacements, Energy Convers. Manag. 259, 115568 (2022) [CrossRef] [Google Scholar]
- C. Wang, S.-K Lai, J.-M Wang, J.-J Feng, Y.-Q Ni, An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power, Appl. Energy 291, 116825 (2021) [CrossRef] [Google Scholar]
- Q. Wen, X. He, Z. Lu, R. Streiter, T. Otto. A comprehensive review of miniatured wind energy harvesters, Nano Mater. Sci. 3, 170–185 (2021) [CrossRef] [Google Scholar]
- K. Paul, A. Amann, S. Roy, Tapered nonlinear vibration energy harvester for powering Internet of Things, Appl. Energy 283, 116267 (2021) [CrossRef] [Google Scholar]
- M. Kang, E.M. Yeatman, Coupling of piezo- and pyro-electric effects in miniature thermal energy harvesters, Appl. Energy 262, 114496 (2020) [CrossRef] [Google Scholar]
- Z.-Y Huo, D.-M Lee, Y.-J Kim, S.-W Kim, Solar-induced hybrid energy harvesters for advanced oxidation water treatment, iScience 24, 102808 (2021) [CrossRef] [PubMed] [Google Scholar]
- L. Battista, L. Mecozzi, S. Coppola, V. Vespini, S. Grilli, P. Ferraro, Graphene and carbon black nano-composite polymer absorbers for a pyro-electric solar energy harvesting device based on LiNbO3 crystals, Appl. Energy 136, 357–362 (2014) [CrossRef] [Google Scholar]
- R. Hamid, M. Rasit Yuce, A wearable energy harvester unit using piezoelectric-electromagnetic hybrid technique, Sens. Actuat. A 257, 198–207 (2017) [CrossRef] [Google Scholar]
- Y. Wang, X. Liu, T. Chen, H. Wang, C. Zhu, H. Yu, L. Song, X. Pan, J. Mi, C. Lee, M. Xu, An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition, Nano Energy 90, 106503 (2021) [CrossRef] [Google Scholar]
- A.M. Baranov, S. Akbari, D. Spirjakin, A. Bragar, A. Karelin, Feasibility of RF energy harvesting for wireless GasSensorNodes, Sens. Actuat. ASNA 10692 (2018) [Google Scholar]
- P. Nintanavongsa, U. Muncuk; D. Richard Lewis, K.R. Chowdhury, Wireless power transmission: state of the art and perspectives, Int. Rev. Electr. Eng. 14 (2019) [Google Scholar]
- P. Nintanavongsa, U. Muncuk; D. Richard Lewis, K.R. Chowdhury, Design optimization and implementation for RF energy harvesting circuits, IEEE J. Emerg. Selected Top. Circ. Syst. 2 (2012) [Google Scholar]
- M. Cansiz, D. Altinel b c, G. Karabulut Kurt, Efficiency in RF energy harvesting systems: a comprehensive review, Energy 174, 292–309 (2019) [CrossRef] [Google Scholar]
- M. Grätzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem. 44, 6841–6851 (2005) [CrossRef] [PubMed] [Google Scholar]
- S. Wang, L. Lin, Z.L. Wang, Triboelectric nanogenerators as self-powered active sensors, Nano Energy 11, 436–462 (2015) [CrossRef] [Google Scholar]
- G. Sebald, D. Guyomar, A. Agbossou, On thermoelectric and pyroelectric energy harvesting, Smart Mater. Struct. 18, 125006 (2009) [CrossRef] [Google Scholar]
- M. Sharma, A. Chauhan, R. Vaish, V. Singh Chauhan, Finite element analysis on solar energy harvesting using ferroelectric polymer, Sol. Energy 115, 722–732 (2015) [CrossRef] [Google Scholar]
- A. Bibo, M.F. Daqaq, Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator, Appl. Phys. Lett. 102, 243904 (2013) [CrossRef] [Google Scholar]
- M.H. Raouadi, O. Touayar, Harvesting wind energy with pyroelectric nanogenerator PNG using the vortex generator mechanism, Sens. Actuat. A 273, 42–48 (2018) [CrossRef] [Google Scholar]
- A. Bakytbekov, T.Q. Nguyen, C. Huynh, K.N. Salama, A. Shamim, Fully printed 3D cube-shaped multiband fractal rectenna for ambient RF energy harvesting, Nano Energy 53, 587-595 (2018) [Google Scholar]
- Z. Zeng, S. Shen, X. Zhong, X. Li, Design of sub-gigahertz reconfigurable RF energy harvester from −22 to 4 dBm with 99.8% peak MPPT power efficiency, IEEE J. Solid State Circ. 54, 2601–2613 (2019) [CrossRef] [Google Scholar]
- T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, S. Otaka, A 950-MHz rectifier circuit for sensor network tags with 10-m distance, IEEE J. Solid State Circ. 41, 35–41 (2006) [CrossRef] [Google Scholar]
- B. Li, X. Shao, N. Shahshahan, N. Goldsman, An antenna Codesign dual band RF energy harvester, IEEE Trans. Circ. Syst. I 60, 3256–3266 (2013) [Google Scholar]
- V. Kuhn, C. Lahuec, F. Seguin, C. Person, A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%, IEEE Trans. Microw. Theor. Technol. 63, 1768–1778 (2015) [CrossRef] [Google Scholar]
- G. Papotto, F. Carrara, A. Finocchiaro, A 90-nm CMOS 5-mbps crystal-less RF-powered transceiver for wireless sensor network nodes, IEEE J. Solid State Circ. 49, 335–346 (2014) [CrossRef] [Google Scholar]
- S. Qayyum, R. Negra, 0.16 mW, 7-70 GHz distributed power detector with 75 dB voltage sensitivity in 130 Nm standard CMOS technology, in 2017 12th European Microwave Integrated Circuits Conference (EuMIC), Nuremberg, Germany (2017), pp. 13–16 [CrossRef] [Google Scholar]
- M.A. Abouzied, H. Osman, V. Vaidya, An integrated concurrent multiple-input self-startup energy harvesting capacitivebased DC adder combiner, IEEE Trans. Ind. Electron. 65, 6281–6290 (2018) [CrossRef] [Google Scholar]
- M. Badr, M.M. Aboudina, F.A. Hussien, Simultaneous multi-source integrated energy harvesting system for IoE applications, in 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems, MWSCAS), Dallas, TX, USA (2019), pp. 271–274 [CrossRef] [Google Scholar]
- E.J. Carlson, K. Strunz, B.P. Otis, A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting, IEEE J. Solid State Circ. 45, 741–750 (2010) [CrossRef] [Google Scholar]
- M. Wens, M. Cornelissens, K. Steyaert, A fully-integrated 0.18µm CMOS DC-DC step-up converter, using a bond wire spiral inductor, in ESSCIRC 2007-33rd European Solid-State Circuits Conference, Munich, Germany (2007) pp. 268–271 [CrossRef] [Google Scholar]
- Y. Tian, L. Liu, J. Ma, A high-sensitivity, low-noise dual-band RF energy harvesting and managing system for wireless bio-potential acquisition, Microelectr. J. 116, 105239 (2021) [CrossRef] [Google Scholar]
- G. Charalampidis, A. Papadakis, M. Samarakou, Power estimation of RF energy harvesters, Energy Proc. 157, 892–900 (2019) [CrossRef] [Google Scholar]
- M.R Arahal, F. Barrero, M.G Ortega, C. Martin, Martin, Harmonic analysis of direct digital control of voltage inverters, Math. Comput. Simul. 130, 155–166 (2016) [CrossRef] [Google Scholar]
- J.F Khan, S.M.A. Bhuiyan, K.M Rahmanb, G.V Murphy, Space vector PWM for a two-phase VSI, Electr. Power Energy Syst. 51, 265–277 (2013) [CrossRef] [Google Scholar]
- N. Onur Çetin, A.M Hava, Topology and PWM method dependency of high frequency leakage current characteristics of voltage source inverter driven AC motor drives, 978-1- 4673 −0803-8/12/$31. 00. IEEE, 2012 [Google Scholar]
- M. H. Rashid, Power Electronics Handbook (Academic Press, 2020) [Google Scholar]
- N. Hanigovszki, J. Landkildehus, G. Spiazzi, F. Blaabjerg, An EMC evaluation of the use of unshielded MotorCables in AC adjustable speed drive applications, IEEE Trans. Power Electr. 21 (2006) [Google Scholar]
- Z. Fang, D. Jiang, Y. Zhang, Study of the characteristics and suppression of EMI of inverter with SiC and Si devices, Chin. J. Electr Eng. 4 (2018) [Google Scholar]
- M. Barnes, Electromagnetic compatibility (EMC), Practical Variable Speed Drives and Power Electronics, 1st Edition (2003) [Google Scholar]
- F. Costa, C. Vollaire, Characteristics and evolution of electromagnetic noise in on-board power devices, French national committee for scientific radioelectricity, IEEE Trans. Electromagn. Compat. 50, 445–449 (2008) [Google Scholar]
- J. Aime, Radiation from static converters: application to the speed variation, Theses in University Joseph Fourier (2009) [Google Scholar]
- IEC 6196 7-2, Integrated circuits − Measurement of electromagnetic emission, 150KHzto 1GHz − Part 2: Measurement of radiated emissions, TEM-cell method [Google Scholar]
- IEC 6196 7-3, Integrated circuit − Measurement of electromagnetic emission, 150KHz to 1GHz − Part 3: Measurement of radiated emissions, surface scan method (10 kHz to3 GHz) [Google Scholar]
- A. Boyer, S. Bendhia, E. Sicard, Characterisation of electromagnetic susceptibility of integrated circuits using near-field scan, Electron. Lett. 43, 15–16 (2007) [CrossRef] [Google Scholar]
- J.Fan Near-field scanning for EM emission characterization, IEEE Electromagn. Compat. Mag. 4, 67–73 (2015) [CrossRef] [Google Scholar]
- Y. Vives-Gilabert, C. Arcambal, A. Louis, Modeling magnetic radiations of electronic circuits using near-field scanning method, IEEE Trans. Electromagn. Compat. 49, 391–400 (2007) [Google Scholar]
- R.E Hamam, A. Karalis, J.D Joannopoulos, M. Soljačić, Efficient weakly-radiative wireless energy transfer: an EIT-like approach, Ann. Phys. 324, 1783–1795 (2009) [CrossRef] [Google Scholar]
- K.S. Adu-Manu, N. Adam, C. Tapparello, H. Ayatollahi, Energy-Harvesting Wireless Sensor Networks (EH-WSNs): A Review, ACM Transactions on Sensor Networks 14, 1–50 (2018) [Google Scholar]
- F.K Shaikh, S. Zeadally, Energy harvesting in wireless sensor networks: a comprehensive review, Renew. Sustain. Energy Rev. 55, 1041–1054 (2016) [CrossRef] [Google Scholar]
- F. Gao, W. Li, X. Wang, X. Fang, M. Ma, A self-sustaining pyroelectric nanogenerator driven by water vapor, Nano Energy 22, 19–26 (2016) [CrossRef] [Google Scholar]
- M. Xie, S. Dunn, E. Le Boulbar, C.R Bowen, Pyroelectric energy harvesting for water splitting, Int. J. Hydrogen Energy 1–9 (2017) [Google Scholar]
- Y. Zhang, P.T. Thuy Phuong, E. Roake, H. Khanbareh, Y. Wang, S. Dunn, C. Bowen, Thermal energy harvesting through pyroelectricity, Sens. Actuat. A Phys. 158, 132–139 (2010) [Google Scholar]
- G. Sebald, D. Guyomar, A. Agbossou, On thermoelectric and pyroelectric energy harvesting, Smart Mater. Struct. 18, 125006 (2009) [CrossRef] [Google Scholar]
- M. Lallart, D. Guyomar, Y. JayetShow, R. Claude, Synchronized switch harvesting applied to self-powered smart-systems : piezo active micro-generators for autonomous wireless receiver, Sens. Actuators A Phys. 147, 263–272 (2008) [CrossRef] [Google Scholar]
- U. Khaled, H. Farh, S. Alissa, A. Abanmi, O. Aldraimli, Efficient solution of the DC-link hard switching inverter of the PV system, J. King Saud Univ. Eng. Sci. 32, 425–431 (2020) [Google Scholar]
- M. Lallart, D. Guyomar, Y. JayetShow, R. Claude, Synchronized switch harvesting applied to self-powered smart-systems: piezo active micro-generators for autonomous wireless receiver, Sens. Actuat. A 147, 263–272 (2008) [CrossRef] [Google Scholar]
- M. Tlig, J. Ben Hadj Slama, M.A. Belaid. Conducted and radiated EMI evolution of power RF N-LDMOS after accelerated ageing tests, Microelectr. Reliab. 53, 1793–1797 (2013) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.