Open Access

This article has an erratum: []

Int. J. Metrol. Qual. Eng.
Volume 14, 2023
Article Number 3
Number of page(s) 10
Published online 01 May 2023
  1. Z.M. Zhang, B.K. Tsai, G. Machin, Radiometric temperature measurement II. Applications, in Experimental methods in the physical sciences, edited by A.C. Parr, T. Lucatoro (Academic Press, Elsevier, Oxford, 2010), Vol. 43, pp. 394–400. [Google Scholar]
  2. J. Fisher, G. Neuer, E. Schreiber, R. Thomas, Metrological characterization of a new transfer-standard radiation thermometer, im TEMPMEKO (2001), pp. 801–806. [Google Scholar]
  3. Joachim Fischer (PTB), Mauro Battuello (IMGC), Mohamed Sadli (BNM-INM), Mark Ballico (CSIRO), Seung Nam Park (KRISS), Peter Saunders (MSL), Yuan Zundong (NIM), B. Carol Johnson (NIST), Eric van der Ham (NMi/VSL), Wang Li (NMC/SPRING), Fumihiro Sakuma (NMIJ), Graham Machin (NPL), Nigel Fox (NPL), Sevilay Ugur (UME)and Mikhail Matveyev (VNIIM), Uncertainty budgets for realization of scales by radiation thermometry, CCT document CCT/03–03 [Google Scholar]
  4. Mise en pratique for the definition of the kelvin in the SI, SI Brochure – 9th edition 2019, Appendix 2 [Google Scholar]
  5. H. McEvoy, G. Machin, V. Montag, Guide to the Realization of the ITS-90: Fixed Points for Radiation Thermometry, CCT guide document (2018) [Google Scholar]
  6. H. Yoon, P. Saunders, G. Machin, A.D Todd, Guide to the Realization of the ITS-90: Radiation Thermometry. CCT guide document (2018) [Google Scholar]
  7. P. Saunders, General interpolation equations for the calibration of radiation thermometers, Metrologia 34, 201–210 (1997) [CrossRef] [Google Scholar]
  8. H. Nasibov, S. Ugur, Characterization of the pyrometers to the subject of preamplifier gain nonlinearity, in XVII IMEKO World Congress Metrology in the 3rd Millennium (2003), pp. 1702–1705 [Google Scholar]
  9. P. Bloembergen, E.W.M. van der Ham, G. Machin, C.Schrama, A study on the instrument-oriented characterization of low-temperature radiation thermometers, in TEMPMEKO (2001), pp. 723–728 [Google Scholar]
  10. Y. Yamaguch, Y. Yamada, Uncertainty due to non-linearity in radiation thermometers calibrated by multiple fixed points, AIP Conf. Proc. 1552, 688–692 (2013) [Google Scholar]
  11. M.S. Lima, R.N. Teixeira, A.P. Cunha, I.B. Couceiro, Spectral responsivity calibration of the linear pyrometer of INMETRO, in XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development (2006) [Google Scholar]
  12. P. Bloembergen, Analytical representation of the size of source effect, Metrologia 46, 534–543 (2009) [CrossRef] [Google Scholar]
  13. Y. Yamada, Y. Wang, Y. Shimizu, K. Minahiro, Size of source effect correction for radiation thermometers calibrated by fixed point black bodies, in SICE Annual Conference (2013), pp. 389–394. [Google Scholar]
  14. B. Chu, G. Machin, An evaluation of infrared thermometers by the intercomparison of standard Black body sources, in TEMPMEKO (1996), p. 297 [Google Scholar]
  15. J. Ishii, M. Kobayashi, F. Sakuma, A. Ono, DC-operated InSb radiation thermometer for precision measurement of near room temperatures, in TEMPMEKO (1999), pp. 625-630 [Google Scholar]
  16. W.H. Yoon, V. Khromchenko, P. Eppeldauer Improvements in the design of thermal infrared thermometers and sensors, Opt. Express 27 (2019) [Google Scholar]
  17. F. Sakuma, Temperature coefficient of the Topcon thermometers, in XIX IMEKO World Congress Fundamental and applied metrology (2009), pp. 1475–1480 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.