Open Access
Int. J. Metrol. Qual. Eng.
Volume 13, 2022
Article Number 14
Number of page(s) 9
Published online 24 October 2022
  1. Y. Huang, L. Wang, S.Y. Liang, Handbook of Manufacturing (World Scientific Publishing 2019) [CrossRef] [Google Scholar]
  2. M. Zizovic, D. Pamucar, M. Albijanic, P. Chatterjee, I. Pribicevic, Eliminating rank reversal problem using a new multi-attribute model – the RAFSI method, Mathematics 8, 1–16 (2020) [Google Scholar]
  3. S. Mufazzal, S.M. Muzakkir, A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals, Comput. Ind. Eng. 119, 427–438 (2018) [CrossRef] [Google Scholar]
  4. D. Bozanic, A. Milic, D. Tesic, W. Sałabun, D. Pamucar, D numbers - Fucom – Fuzzy RAFSI model for selecting the group of construction machines for enabling mobility, Facta Univers. 9, 447–471 (2021) [Google Scholar]
  5. D. Pamucar, M. Zizovic, D. Marinkovic, D. Doljanica, S.V. Jovanovic, P. Brzakovic, Sustainable reorganization of a healthcare system in an emergency situation caused by the COVID-19 pandemic, Sustainability 12, 1–24 (2020) [PubMed] [Google Scholar]
  6. A. Alossta, O. Elmansouri, I. Badi, Resolving a location selection problem by means of an integrated AHP-RAFSI approach, Rep. Mech. Eng. 2, 135–142 (2021) [CrossRef] [Google Scholar]
  7. N.Z. Khan, T.S.A. Ansari, A.N. Siddiquee, Z.A. Khan, Selection of Elearning websites using a novel Proximity Indexed Value (PIV) MCDM method, J. Comput. Educ. 6, 241–256 (2019) [CrossRef] [Google Scholar]
  8. S. Wakeel, S. Bingol, M.N. Bashir, S. Ahmad, Selection of sustainable material for the manufacturing of complex automotive products using a new hybrid Goal Programming Model for Best Worst Method–Proximity Indexed Value method, Proc. Inst. Mech. Eng. L 0, 1–15 (2020) [Google Scholar]
  9. A. Ulutaş, Ç. Karakoy, An analysis of the logistics performance index of EU countries with an integrated MCDM model, Econ. Bus. Rev. 5, 49–69 (2019) [Google Scholar]
  10. J. Raigar, V.S. Sharma, S. Srivastava, R. Chand, J. Singh, A decision support system for the selection of an additive manufacturing process using a new hybrid MCDM technique, S¯dhan¯ 45, 1–14 (2020) [Google Scholar]
  11. N.L. Khanh, N.V. Cuong, The combination of Taguchi and Proximity Indexed Value methods for multi-criteria decision making when milling, Int. J. Mech. 15, 127–135 (2021) [CrossRef] [Google Scholar]
  12. A. Ulutas, C.B. Karakus, Location selection for a textile manufacturing facility with GIS based on hybrid MCDM approach, Industria Textile 72, 126–132 (2021) [CrossRef] [Google Scholar]
  13. D. Duc Trung, Application of TOPSIS and PIV methods for multi-Criteria decision making in hard turning process, J. Mach. Eng. 21, 57–71 (2021) [CrossRef] [Google Scholar]
  14. D. Duc Trung, The combination for Taguchi – Entropy – WASPAS – PIV methods for multi-Criteria decision making when external cylindrical grinding of 65G steel, J. Mach. Eng. 21, 90–105 (2021) [CrossRef] [Google Scholar]
  15. D. Duc Trung, Application of EDAS, MARCOS, TOPSIS, MOORA and PIV methods for multi-criteria decision making in milling process, Strojnícky časopis – J. Mech. Eng. 71, 69–84 (2021) [CrossRef] [Google Scholar]
  16. D. Duc Trung, A combination method for multi-criteria decision making problem in turning process, Manufactur. Rev. 8, 1–17 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  17. E. Roszkowska, Rank ordering criteria weighting methods – a comparative overview, J. Dedicated Needs Sci. Practice 5, 1–168 (2013) [Google Scholar]
  18. K. Ghorabaee, M. Amiri, M. Zavadskas, E.K. Turskis, Z. Antucheviciene, Determination of objective weights using a new method based on the removal effects of criteria (MEREC), Symmetry 13, 1–20 (2021) [Google Scholar]
  19. K.G. Mehdi, Assessment of distribution center locations using a multiexpert subjective–objective decisionmaking approach, Sci. Rep. 11, 1–19 (2021) [NASA ADS] [CrossRef] [Google Scholar]
  20. K. Sabaghian, K. Khamforoosh, A. Ghaderzadeh, Presentation of a new method based on modern multivariate approaches for big data replication in distributed environments, Plos ONE 16, 1–18 (2021) [Google Scholar]
  21. D. Duc Trung, H.X. Thinh, A multi-criteria decision-making in turning process using the MAIRCA, EAMR, MARCOS and TOPSIS methods, Adv. Product. Eng. Manag. 16, 443–456 (2021) [CrossRef] [Google Scholar]
  22. H.J. Einhorn, W. Mccoach, A symble multiattribute utility procedure for evaluation, Behav. Sci. 22, 270–282 (1997) [Google Scholar]
  23. H.J. Einhorn, W. Mccoach, A symble multiattribute utility procedure for evaluation, Behav. Sci. 22, 270–282 (1997) [Google Scholar]
  24. R.M. Dawes, B. Coorigan, Linear models in decision malking, Psycholog. Bull. 81, 95–106 (1974) [CrossRef] [Google Scholar]
  25. N.T. Nguyen, D. Duc Trung, Modeling and improvement of the surface roughness model in hole turning process 3X13 stainless steel by Johnson transformation, Int. J. Mech. Product. Eng. Res. Dev. 10, 12097–12110 (2020) [CrossRef] [Google Scholar]
  26. M.S. Phadke, Quality Engineering Using Robust Design (Prentice-Hall, 1989) [Google Scholar]
  27. D. Duc Trung, N.V. Thien, N.T. Nguyen, Application of TOPSIS method in multi-objective optimization of the grinding process using segmented grinding wheel, Tribol. Ind. 43, 12–22 (2021) [CrossRef] [Google Scholar]
  28. V.V.K. Lakshmi, K. Venkata Subbaiah, A.V. Kothapalli, K. Suresh, Parametric optimization while turning Ti-6Al-4V alloy in Mist-MQCL (Green environment) using the DEAR method, Manufactur. Rev. 7, 1–13 (2020) [Google Scholar]
  29. S.K. Pattnaik, M. Behera, S. Padhi, P. Dash, S.K. Sarangi, Study of cutting force and tool wear during turning of aluminium with WC, PCD and HFCVD coated MCD tools, Manufactur. Rev. 7, 1–14 (2020) [Google Scholar]
  30. R.L. Rodriguez, J.C. Lopes, M.V. Garcia, G.E. Tarrento, A.R. Rodrigues, L.E.D. Angelo Sanchez, H.J.D. Mello, P.R.D. Aguiar, E.C. Bianchi, Grinding process applied to workpieces with different geometries interrupted using CBN wheel, Int. J. Adv. Manufactur. Technol. 107, 1265–1275 (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.