Open Access
Int. J. Metrol. Qual. Eng.
Volume 13, 2022
Article Number 13
Number of page(s) 11
Published online 13 October 2022
  1. T. Hayashi. T. Komatsu. R Kondo et al., Anomalous sound event detection based on WaveNet, in: European Signal Processing Conference (EUSIPCO), 2018 [Google Scholar]
  2. D. Chakrabarty, M. Elhilali, Abnormal sound event detection using temporal trajectories mixtures, in: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016 [Google Scholar]
  3. Y. Li, X. Li, Y. Zhang et al., Anomalous sound detection using deep audio representation and a BLSTM network for audio surveillance of roads. IEEE Access 1–1 (2018) [Google Scholar]
  4. D. Hendrycks, K.A. Gimple, A baseline for detecting misclassified and out-of-distribution examples in neural networks, arXiv:1610.02136 (2017) [Google Scholar]
  5. P. Foggia, N Petkov, A Saggese et al., Audio surveillance of roads: a system for detecting anomalous sounds, IEEE Trans. Intell. Transport. Syst. 17, 279–288 (2015) [Google Scholar]
  6. Y. Koizumi, S. Saito, H. Uematsu et al., Optimizing acoustic feature extractor for anomalous sound detection based on Neyman-Pearson Lemma, in: European Signal Processing Conference (EUSIPCO), 2017, pp. 698–702 [CrossRef] [Google Scholar]
  7. D. Putri, D.O. Siahaan, Software feature extraction using infrequent feature extraction, in: 6th International Annual Engineering Seminar (InAES), 2016 [Google Scholar]
  8. V.K. Mittal, B. Yegnanarayana, Production features for detection of shouted speech, in: Consumer Communications and Networking Conference (CCNC), 2013, pp. 106–111 [Google Scholar]
  9. S. Advanne, P. Pertila, T. Virtanen et al., Sound event detection using spatial features and convolutional recurrent neural network, in: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017 [Google Scholar]
  10. K. Suefusa, T. Nishida, H. Purohit et al., Anomalous sound detection based on interpolation deep neural network, in: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 271–275 [Google Scholar]
  11. T Komatsu, T. Hayashiy, R. Kondo et al., Scene-dependent anomalous acoustic-event detection based on conditional Wavenet and I-vector, in: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 870–874 [Google Scholar]
  12. K. Yuma, S. Shoichiro, U. Hisashi, H. Noboru, I. Keisuke et al., ToyADMOS: a dataset of miniature-machine operating sounds for anomalous sound detection, in: Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2019, pp. 308–312 [Google Scholar]
  13. P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognit. 1145–1159 (1997) [CrossRef] [Google Scholar]
  14. P. Vellaisamy, V. Vijay, Log-linear modeling using conditional log-linear structures, Ann. Inst. Statist. Math. 61, 309–329 (2009) [CrossRef] [Google Scholar]
  15. Y.-K. Lee, O.-W. Kwon, A phase-dependent a priori SNR estimator in the Log-Mel spectral domain for speech enhancement, IEEE Int. Conf. Consumer Electron. 1, 413–414 (2011) [Google Scholar]
  16. Y. Masuyama, K. Yatabe, Y. Oikawa et al., Phase-aware Harmonic/percussive source separation via convex optimization, in: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 985–989 [Google Scholar]
  17. G. Jia, G. Liu, Z. Yuan, J. Wu et al., An anomaly detection framework based on autoencoder and nearest neighbor, in: Proceedings of the 2018 15th International Conference on Service Systems and Service Management (ICSSSM), 2018, pp. 1–6 [Google Scholar]
  18. C. Tebaldi, R. Knutti, The use of the multi-model ensemble in probabilistic climate projections, Philos. Trans. R. Soc. 365, 2053–2075 (2007) [CrossRef] [PubMed] [Google Scholar]
  19. D.P. Kingma, M. Welling, Auto-encoding variational Bayes, arXiv:1312.6114 (2018) [Google Scholar]
  20. S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio et al., Contractive auto-encoders: explicit invariance during feature extraction, in: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), 2011, pp. 833–840 [Google Scholar]
  21. A. Oord, S. Dieleman, H. Zen et al., WaveNet: a generative model for raw audio. arXiv:1609.03499 (2016) [Google Scholar]
  22. R. Bivand, J. Hauke, T. Kossowski et al., Computing the Jacobian in Gaussian spatial autoregressive models: an illustrated comparison of available methods, Geogr. Anal. 45, 150–179 (2013) [CrossRef] [Google Scholar]
  23. K. He, X. Zhang, S. Ren, J. Sun et al., Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778 [Google Scholar]
  24. C. Sheng, L. Yang, G. Xiang et al., MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices, arXiv:1804.07573 (2018) [Google Scholar]
  25. I.-T. Jolliffe, Principal component analysis, J. Market. Res. 87, 513 (2002) [Google Scholar]
  26. J. Lee, B. Kang, S.H. Kang et al., Integrating independent component analysis and local outlier factor for plant-wide process monitoring, J. Process Control 21, 1011–1021 (2011) [CrossRef] [Google Scholar]
  27. F. Najar, S. Bourouis, N. Bouguila, S. Belghith et al., A comparison between different gaussian-based mixture models, in: IEEE/ACS 14th International Conference on Computer Systems and Applications, 2017, pp. 704–708 [Google Scholar]
  28. E. Fonseca, M. Plakal, D.P.W. Ellis, F. Font, X. Favory, X. Serra, Learning sound event classifiers from web audio with noisy labels, in: International Conference on Acoustics, Speech and Signal F Processing, S Brighton, F UK, 2019, pp. 21–25 [Google Scholar]
  29. G. Huang, Z. Liu, L. v. der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, 2017, pp. 2261–2269 [Google Scholar]
  30. J. Deng, W. Dong, R. Socher, L. Li, K. Li, L. Fei-Fei, ImageNet: a large-scale hierarchical image database, in: Conference on Computer Vision and Pattern Recognition, S Miami, F FL, 2009, pp. 248–255 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.