Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 13, 2022
Article Number 3
Number of page(s) 15
DOI https://doi.org/10.1051/ijmqe/2022002
Published online 14 February 2022
  1. G.G. Coriolis, Mémoire sur les équations du mouvement relatif des systèmes de corps: Bachelier (1835) [Google Scholar]
  2. M. Henry, M. Tombs, M. Duta, F. Zhou, R. Mercado, F. Kenyery, J. Shen, M. Morles, C. Garcia, R. Langansan, Two-phase flow metering of heavy oil using a coriolis mass flow meter: a case study, Flow Measur. Instr. 17, 399–413 (2006) [CrossRef] [Google Scholar]
  3. R. Luo, J. Wu, S. Wan, Fluid-structure coupling analysis and simulation of viscosity effect on Coriolis mass flowmeter, in APCOM & ISCM, 11-14th December, Singapore, 2013 [Google Scholar]
  4. A.F. Skea, A.R.W. Hall, Effects of gas leaks in oil flow on single-phase flowmeters, Flow Measur. Instr. 10, 145–150 (1999) [CrossRef] [Google Scholar]
  5. R. Cheesewright, C. Clark, D. Bisset, The identification of external factors which influence the calibration of Coriolis massflow meters, Flow Measur. Instrum. 11, 1–10 (2000) [CrossRef] [Google Scholar]
  6. G. Vetter, S. Notzon, Effect of pulsating flow on Coriolis mass flowmeters, Flow Measur. Instr. 5, 263–73 (1994) [CrossRef] [Google Scholar]
  7. A. Svete, J. Kutin, G. Bobovnik, I. Bajsić, Theoretical and experimental investigations of flow pulsation effects in Coriolis mass flowmeters, J. Sound Vibr. 352, 30–45 (2015) [CrossRef] [Google Scholar]
  8. A. Belhadj, R. Cheesewright, C. Clark, The simulation of coriolis meter response to pulsating flow using a general purpose F.E. code, J. Fluids Struct. 14, 613–34 (2000) [CrossRef] [Google Scholar]
  9. R. Cheesewright, A. Belhadj, C. Clark, Effect of mechanical vibrations on coriolis mass flow meters, J. Dyn. Syst. Measur. Control Trans. ASME 125, 103–113 (2003) [CrossRef] [Google Scholar]
  10. R. Cheesewright, C. Clark, Y.Y. Hou, The response of Coriolis flowmeters to pulsating flows, Flow Measur. Instru. 15, 59–67 (2004) [CrossRef] [Google Scholar]
  11. C. Clark, R. Cheesewright, Experimental determination of the dynamic response of Coriolis mass flow meters, Flow Measur. Instru. 17, 39–47 (2006) [CrossRef] [Google Scholar]
  12. C. Clark, R. Cheesewright, The influence upon Coriolis mass flow meters of external vibrations at selected frequencies, Flow Measur. Instru. 15, 33–42 (2003) [CrossRef] [Google Scholar]
  13. G.S.J. Hemp, Modelling of the Coriolis Mass flowmeter, J. Sound Vibr. 132, 473–89 (1989) [CrossRef] [Google Scholar]
  14. J. Hemp, L.A. Hendry, The weight vector theory of Coriolis mass flowmeters — Part 2. Boundary source of secondary vibration, Flow Measur. Instru. 6, 259–64 (1995) [CrossRef] [Google Scholar]
  15. J. Hemp, The weight vector theory of Coriolis mass flowmeters, Flow Measur. Instru. 5, 247–253 (1994) [CrossRef] [Google Scholar]
  16. B.R. Binulal, A. Rajan, S.R. Abhilash, J. Kochupillai, K. Heuy Dong, Mass flow prediction of the Coriolis meter using C0 continuous beam elements, J. Therm. Sci. 24, 398–402 (2015) [CrossRef] [Google Scholar]
  17. B.R. Binulal, A. Rajan, J. Kochupillai, Dynamic analysis of Coriolis flow meter using Timoshenko beam element, Flow Measur. Instru. 47, 100–109 (2016) [CrossRef] [Google Scholar]
  18. B.R. Binulal, A. Rajan, M. Unnikrishnan, J. Kochupillai, Experimental determination of time lag due to phase shift on a flexible pipe conveying fluid, Measurement 83, 85–95 (2016) [Google Scholar]
  19. V. Kumar, M. Anklin, Numerical simulations of coriolis flow meters for low reynolds number flows, MAPAN 26, 225–35 (2011) [CrossRef] [Google Scholar]
  20. V. Kumar, M. Anklin, B. Schwenter, Fluid–structure interaction (FSI) simulations on the sensitivity of Coriolis flow meter under low Reynolds number flows, in 15th International Flow Measurement Conference 2010, number flows in straight tube coriolis flowmeters. XX IMEKO World Congress:Metrology for Green Growth. Busan, Republic of Korea 2012. p. 1674–7. [Google Scholar]
  21. R. Luo, J. Wu, S. Wan, Numerical study on the effect of low Reynolds FLOMEKO 2010, October 13, 2010 − October 15, 2010. Taipei, Taiwan: IMEKO-International Measurement Federation Secretariat; 2010. p. 412–21 [Google Scholar]
  22. N. Mole, G. Bobovnik, J. Kutin, B. Štok, I. Bajsić, Coupled fluid-structure simulation of the Coriolis flowmeter under forced vibration, in Soares BHVTaCAM, editor. Proceedings of the 10th International Conference on Civil, Structural and Environmental Engineering Computing (Civil-Comp Press, Scotland, 2004) [Google Scholar]
  23. C.P. Stack, T.J. Chunningham, Design and Analysis of Coriolis Mass Flowmeter using MSC_NASTRAN. http://webmscsoftwarecom/support/library/conf/wuc93/p05493pdf.1-17 [Google Scholar]
  24. V. Kumar, M. Anklin, Numerical simulation of coriolis flowmeters at low Reynolds number flows, J. Metrolog. Soc. India 26, 225–235 (2011) [Google Scholar]
  25. N. Mole, G. Bobovnik, J. Kutin, B. Štok, I. Bajsić, An improved three-dimensional coupled fluid-structure model for Coriolis flowmeters, J. Fluids Struct. 24, 559–575 (2008) [CrossRef] [Google Scholar]
  26. G. Bobovnik, N. Mole, J. Kutin, B. Štok, I. Bajsić, Coupled finite-volume/finite-element modelling of the straight-tube Coriolis flowmeter, J. Fluids Struct. 20, 785–800 (2005) [CrossRef] [Google Scholar]
  27. J.E. Smith, Method and structure for flow measurement. Google Patents; 1980 [Google Scholar]
  28. EF Management, Precision flow & density technology: Coriolis flowmeter K-factor calculation, 2014. http://www2emersonprocesscom/siteadmincenter/PM%20Micro%20Motion%20Documents/Flyer-K-Factor-14FA-MC-001949pdf [Google Scholar]
  29. M. Kazahaya, A mathematical model and error analysis of Coriolis mass flowmeters, IEEE Trans. Instru. Measur. 60, 1163–1174 (2011) [CrossRef] [Google Scholar]
  30. W. Merzkirch, K. Gersten, F. Peters, R.A.M.V. Vasanta, E. Von Lavante, V. Hans, Fluid mechanics of flow metering, 2005 [CrossRef] [Google Scholar]
  31. P. Tim, Understanding the Challenges of Two-Phase Flow, 2004. http://wwwemersoncom/resource/blob/66308/152c05189adf024662ad2aba500629de/understanding-the-challenges-of-two-phase-flow-datapdf [Google Scholar]
  32. A. Persson, The Coriolis Effect − a conflict between common sense and mathematics [Google Scholar]
  33. C. Clark, S. Wang, R. Cheesewright, The performance characteristics of a micro-machined Coriolis flow meter: an evaluation by simulation, Flow Measur. Instru. 17, 325–333 (2006) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.