Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 11, 2020
Article Number 15
Number of page(s) 44
DOI https://doi.org/10.1051/ijmqe/2020009
Published online 25 November 2020
  1. Statement − Novel coronavirus outbreak: Preparing now as one, 2020, October 11. https://www.euro.who.int/en/media-centre/sections/statements/2020/statement-novel-coronavirus-outbreak-preparing-now-as-one (accessed October 11, 2020) [Google Scholar]
  2. Coronavirus (COVID-19), 2020, August 31. https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19 (accessed August 31, 2020) [Google Scholar]
  3. D.E. Tadini, M. Papamidimitriou-Olivgeris, O. Opota, E. Moulin, F. Lamoth, O. Manuel, L. Senn, SARS-CoV-2, un point dans la tourmente, Rev. Méd. Suisse 16 , 917–923 (2020) [Google Scholar]
  4. D. Ferrari, A. Motta, M. Strollo, G. Banfi, M. Locatelli, Routine blood tests as a potential diagnostic tool for COVID-19, Clin. Chem. Lab. Med. 58 , 1095–1099 (2020) [CrossRef] [PubMed] [Google Scholar]
  5. M.J. Loeffelholz, Y.-W. Tang, Laboratory diagnosis of emerging human coronavirus infections − the state of the art. Emer. Microbes Infect. 9 , 747–756 (2020) [CrossRef] [PubMed] [Google Scholar]
  6. A. Tahamtan, A. Ardebili, Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev. Mol. Diagnos. 20 , 453–454 (2020) [CrossRef] [Google Scholar]
  7. W. Wang, Y. Xu, R. Gao, R. Lu, K. Han, G. Wu, W. Tan. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. https://doi.org/10.1001/jama.2020.3786 [Google Scholar]
  8. Y.-W. Tang, J.E. Schmitz, D.H. Persing, C.W. Stratton, Laboratory diagnosis of COVID-19: current issues and challenges, J. Clin. Microbiol. 58 , e00512–20 (2020) [Google Scholar]
  9. G. Lippi, A.-M. Simundic, M. Plebani, Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease2019 (COVID-19), Clin. Chem. Lab. Med. 58 , 1070–1076 (2020) [CrossRef] [PubMed] [Google Scholar]
  10. L.M. Kucirka, S.A. Lauer, O. Laeyendecker, D. Boon, J. Lessler, Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure, Ann. Int. Med. 173 , 262–267 (2020) [CrossRef] [PubMed] [Google Scholar]
  11. T. Ishige, S. Murata, T. Taniguchi, A. Miyabe, K. Kitamura, K. Kawasaki, K. Matsushita, Highly sensitive detection of SARS-CoV-2 RNA by multiplex rRT-PCR for molecular diagnosis of COVID-19 by clinical laboratories, Clin. Chim. Acta 507 , 139–142 (2020) [CrossRef] [Google Scholar]
  12. C.-C. Lai, C.-Y. Wang, W.-C. Ko, P.-R. Hsueh, In vitro diagnostics of coronavirus disease 2019: Technologies and application. J. Microb. Immun. Infect., (2020). https://doi.org/10.1016/j.jmii.2020.05.016 [Google Scholar]
  13. J.J. LeBlanc, J.B. Gubbay, Y. Li, R. Needle, S.R. Arneson, D. Marcino, N. Bastien, Real-time PCR-based SARS-CoV-2 detection in Canadian laboratories. J. Clin. Virol. 128 , 104433 (2020) [CrossRef] [PubMed] [Google Scholar]
  14. H. Colton, M. Ankcorn, M. Yavuz, L. Tovey, A. Cope, M. Raza, C. Evans, Improved sensitivity using a dual target, E and RdRp assay for the diagnosis of SARS-CoV-2 infection: experience at a large NHS foundation trust in the UK. J. Infect. (2020), https://doi.org/10.1016/j.jinf.2020.05.061 [Google Scholar]
  15. V.M. Corman, O. Landt, M. Kaiser, R. Molenkamp, A. Meijer, D.K. Chu, C. Drosten, Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 25 , 2000045 (2020) [Google Scholar]
  16. J.F.-W. Chan, C.C.-Y. Yip, K.K.-W. To, T.H.-C. Tang, S.C.-Y. Wong, K.-H. Leung, K.-Y. Yuen, Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens, J. Clin. Microbiol. 58 , e00310–20 (2020) [Google Scholar]
  17. C.C.-Y. Yip, C.-C. Ho, J.F.-W. Chan, K.K.-W. To, H.S.-Y. Chan, S.C.-Y. Wong, K.-Y. Yuen, Development of a novel, genome subtraction-derived, SARS-CoV-2-specific COVID-19-nsp2 real-time RT-PCR assay and its evaluation using clinical specimens, Int. J. Mol. Sci. 21 , 2574 (2020) [Google Scholar]
  18. Z. Shen, Y. Xiao, L. Kang, W. Ma, L. Shi, L. Zhang, M. Li, Genomic diversity of severe acute respiratory syndrome-coronavirus 2 in patients with coronavirus disease 2019, Clin. Infect. Dis 71 , 713–720 (2020) [CrossRef] [PubMed] [Google Scholar]
  19. D.A. Álvarez-Díaz, C. Franco-Muñoz, K. Laiton-Donato, J.A. Usme-Ciro, N.D. Franco-Sierra, A.C. Flórez-Sánchez, M. Mercado-Reyes, Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Inf. Genet. Evol. 84 , 104390 (2020) [CrossRef] [Google Scholar]
  20. K.B. Mullis, F.A. Faloona, Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155 , 335–350 (1987) [CrossRef] [Google Scholar]
  21. E. Oksuz, S. Malhan, S. Unal, H. Arslan, G. Metan, S. Kavuncubasi, R. Department, Health Technology Assessment Report on the Rapid Molecular Diagnostic Tests Used for Identifying the Causing Agent in the Blood Sample in Sepsis (2019) [Google Scholar]
  22. Difference Between RT-PCR and QPCR 2020, August 31. http://www.differencebetween.net/science/difference-between-rt-pcr-and-qpcr/ [Google Scholar]
  23. B. Flora, Vérification en portée A d'une méthode de PCR en temps réel multiplexe: Chlamydia trachomatis, Neisseria gonorrhoeae et Mycoplasma genitalium. PICARDIE JULES VERNE, 2018, January 19. https://dumas.ccsd.cnrs.fr/dumas-02019209/document [Google Scholar]
  24. J. Lamoril, M. Bogard, N. Ameziane, J.-C. Deybach, P. Bouizegarène, Biologie moléculaire et microbiologie clinique en 2007, Immuno anal. Bio. Spéc. 22 , 5–18 (2007) [Google Scholar]
  25. X. He, X. Shi, Internal amplification control and its applications in PCR detection of foodborne pathogens]. Wei Sheng Wu Xue Bao Acta Microbiol. Sinica 50 , 141–147 (2010) [Google Scholar]
  26. ISO 15189:2012, 2020, August 31. ISO. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/61/56115.html (accessed August 31, 2020) [Google Scholar]
  27. V. Molinéro-Demilly, A. Charki, C. Jeoffrion, B. Lyonnet, S. O'Brien, L. Martin, An overview of Quality Management System implementation in a research laboratory, Int. J. Metrol. Qual. Eng. 9 , 2 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  28. ISO 31000:2018, 2020, August 31. ISO. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/56/65694.html (accessed August 31, 2020) [Google Scholar]
  29. ARS Ile de France, 2020, May 15. Recommandations Regionales Covid-19 Periode De Deconfinement [Google Scholar]
  30. Agence Nationale d'Accréditation et d'Evaluation en Santé (ANAES), Acta Endoscop. 28 , 151–155 (1998) [CrossRef] [Google Scholar]
  31. Laboratory Quality Management System, Handbook, 2011. WHO. https://apps.who.int/iris/bitstream/handle/10665/44665/9789241548274_eng.pdf?sequence=1 [Google Scholar]
  32. T.A. Pollack, V. Illuri, R. Khorzad, G. Aleppo, D.J. Oakes, J.L. Holl, A. Wallia, Risk assessment of the hospital discharge process of high-risk patients with diabetes, BMJ Open Qual. 7 , e000224 (2018) [CrossRef] [PubMed] [Google Scholar]
  33. G. Coles, B. Fuller, K. Nordquist, A. Kongslie, Using failure mode effects and criticality analysis for high-risk processes at three community hospitals, Joint Comm. J. Qual. Patient Safety 31 , 132–140 (2005) [CrossRef] [Google Scholar]
  34. C. Vidali, M. Severgnini, M. Urbani, L. Toscano, A. Perulli, M. Bortul, FMECA application to intraoperative electron beam radiotherapy procedure as a quality method to prevent and reduce patient's risk in conservative surgery for breast cancer, Front. Med. 4 , (2017) [CrossRef] [Google Scholar]
  35. C.-J. Chen, L.-L. Hsieh, S.-K. Lin, C.-F. Wang, Y.-H. Huang, S.-Y. Lin, P.-L. Lu, Optimization of the CDC protocol of molecular diagnosis of COVID-19 for timely diagnosis, Diagnostics 10 , 333 (2020) [CrossRef] [Google Scholar]
  36. J. Lv, J. Yang, J. Xue, P. Zhu, L. Liu, S. Li, Detection of SARS-CoV-2 RNA residue on object surfaces in nucleic acid testing laboratory using droplet digital PCR, Sci. Total Environ. 742 , 140370 (2020) [CrossRef] [PubMed] [Google Scholar]
  37. K. Wernike, M. Keller, F.J. Conraths, T.C. Mettenleiter, M.H. Groschup, M. Beer, Pitfalls in SARS-CoV-2 PCR diagnostics, Transbound. Emer. Dis. (2020). https://doi.org/10.1111/tbed.13684 [Google Scholar]
  38. WHO|Dos and Don'ts for molecular testing, 2020, October 12. World Health Organization. https://www.who.int/malaria/areas/diagnosis/molecular-testing-dos-donts/en/ (accessed October 12, 2020) [Google Scholar]
  39. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases, 2020, September 2. World Health Organization. https://www.who.int/publications-detail-redirect/10665-331501 (accessed September 2, 2020) [Google Scholar]
  40. C.C.-Y. Yip, S. Sridhar, A.K.-W. Cheng, K.-H. Leung, G.K.-Y. Choi, J.H.-K. Chen, J.F.-W. Chan, Evaluation of the commercially available LightMix® Modular E-gene kit using clinical and proficiency testing specimens for SARS-CoV-2 detection, J. Clin. Virol. 129 , 104476 (2020) [CrossRef] [PubMed] [Google Scholar]
  41. M. Germa, Présentation de quelques cartes de contrôle(1407), 10, 2015. https://www-techniques-ingenieur-fr.buadistant.univ-angers.fr/fiche-pratique/mesures-analyses-th1/des-bonnes-pratiques-en-laboratoire-a-l-accreditation-dt108/presentation-de-quelques-cartes-de-controle-1407/1407.pdf [Google Scholar]
  42. I. Görzer, Ch. Buchta, P. Chiba, B. Benka, J.V. Camp, H. Holzmann, S.W. Aberle, First results of a national external quality assessment scheme for the detection of SARS-CoV-2 genome sequences, J. Clin. Virol. 129 , 104537 (2020) [CrossRef] [PubMed] [Google Scholar]
  43. A. Piras, D. Rizzo, S. Uzzau, G. De Riu, S. Rubino, F. Bussu, Inappropriate Nasopharyngeal Sampling for SARS-CoV-2 Detection Is a Relevant Cause of False-Negative Reports, Otolaryngol.-Head Neck Surg., 019459982093179 (2020) [Google Scholar]
  44. Interim Guidelines for Clinical Specimens for COVID-19 | CDC, 2020, August 31. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-nCoV/lab/guidelines-clinical-specimens.html (accessed August 31, 2020) [Google Scholar]
  45. Y. Pan, L. Long, D. Zhang, T. Yuan, S. Cui, P. Yang, S. Ren, Potential false-negative nucleic acid testing results for severe acute respiratory syndrome coronavirus 2 from thermal inactivation of samples with low viral loads, Clin. Chem. 66 , 794–801 (2020) [CrossRef] [PubMed] [Google Scholar]
  46. Y. Li, L. Yao, J. Li, L. Chen, Y. Song, Z. Cai, C. Yang, Stability issues of RT‐PCR testing of SARS‐CoV‐2 for hospitalized patients clinically diagnosed with COVID‐19, J. Med. Virol. 92 , 903–908 (2020) [Google Scholar]
  47. C. Bézier, G. Anthoine, A. Charki, Reliability of real-time RT-PCR tests to detect SARS-CoV-2: A literature review, Int. J. Metrol. Qual. Eng. 11, 13 (2020) [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.