Open Access
Int. J. Metrol. Qual. Eng.
Volume 11, 2020
Article Number 14
Number of page(s) 16
Published online 19 November 2020
  1. BIPM, IEC, IFCC, ILAC, ISO, IUPAP, and OIML, Evaluation of measurement data − Guide to the expression of uncertainty in measurement, tech. rep., JCGM/WG1 GUM, 2008. Revised 1st edition − [Google Scholar]
  2. R.S. Dadson, S.L. Lewis, G.N. Peggs, The Pressure Balance: Theory and Practice (HMSO, London, 1982) ISBN 0114800480. [Google Scholar]
  3. P. Saunders, Propagation of uncertainty for non-linear calibration equations with an application in radiation thermometry, Metrologia 40 , 93–101 (2003) [Google Scholar]
  4. S. Vanhuffel, J. Vandewalle, The Total Least Squares Problem: Computational Aspects and Analysis (SIAM, 1987) [Google Scholar]
  5. D. York, Least squares fitting of a straight line with correlated errors, Earth Planet. Sci. Lett. 5 , 320–324 (1968) [Google Scholar]
  6. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 2007), 3rd edn [Google Scholar]
  7. R.L. Burden, J.D. Faires, Numerical Analysis (Brookes/Cole, 2001), 7th edn [Google Scholar]
  8. W.C. Duer, P.J. Ogren, A. Meetze, C.J. Kitchen, R.V. Lindern, D.C. Yaworsky, C. Boden, J.A. Gayer, Comparison of ordinary, weighted, and generalized least-squares straight-line calibrations for LC-MS=MS, GC-MS, HPLC, GC, and enzymatic assay, J. Anal. Toxicol. 32 , 329–338 (2008) [CrossRef] [PubMed] [Google Scholar]
  9. M. Krystek, M. Anton, A weighted total least-squares algorithm for fitting a straight line, Measur. Sci. Technol. 18 , 3438–3442 (2007) [CrossRef] [Google Scholar]
  10. M. Krystek, M. Anton, A least-squares algorithm for fitting data points with mutually correlated coordinates to a straight line, Measur. Sci. Technol. 22 , 035101 (2011) [CrossRef] [Google Scholar]
  11. P.M. Harris, C.E. Matthews, M.G. Cox, Summarizing the output of a Monte Carlo method for uncertainty evaluation, Metrologia 51 , 243–252 (2014) [Google Scholar]
  12. Mathworks, fgls − Feasible generalized least squares, 2020. [Google Scholar]
  13. S. Miller, R. Startz, Feasible generalized least squares using support vector machines, Econ. Lett. 175 , 28–31 (2019) [Google Scholar]
  14. C. Wuethrich, S. Souiyam, Monte Carlo determination of the uncertainty of effective area and deformation coefficient for a piston cylinder unit, in 24th IMEKO TC-3, 14th TC-5, 6th TC-16 and 5th TC-22 International Conference , edited by A. Salceanu, D. Agrez, J. Saliga, M. Savino (Cavtat-Dubrovnik, Croatia: IMEKO, 2020), pp. 1–6 [Google Scholar]
  15. P. Otal, C. Yardin, Modelling methods for pressure balance calibration, Measur. Sci. Technol. 31 , 034004 (2019) [CrossRef] [Google Scholar]
  16. V. Ramnath, Numerical analysis of the accuracy of bivariate quantile distributions utilizing copulas compared to the GUM supplement 2 for oil pressure balance uncertainties, Int. J. Metrol. Qual. Eng. 8 , 29 (2017) [CrossRef] [Google Scholar]
  17. BIPM, IEC, IFCC, ILAC, ISO, IUPAP, and OIML, Evaluation of measurement data − Supplement 2 to the Guide to the expression of uncertainty in measurement − Propogation of distributions using a Monte Carlo method, tech. rep., JCGM/WG1 GUM Supplement 2, 2011. 1st edition − [Google Scholar]
  18. V. Ramnath, Determination of pressure balance distortion coefficient and zero-pressure effective area uncertainties, Int. J. Metrol. Qual. Eng. 2 , 101–119 (2011) [CrossRef] [EDP Sciences] [Google Scholar]
  19. CRAN, The R Project for Statistical Computing, 2020. [Google Scholar]
  20. CRAN, VineCopula: Statistical Inference of Vine Copulas, 2020. [Google Scholar]
  21. V. Ramnath, Analysis and comparison of hyper-ellipsoidal and smallest coverage regions for multivariate Monte Carlo measurement uncertainty analysis simulation datasets, MAPAN-J. Metrol. Soc. India 1–16 (2019) [Google Scholar]
  22. S.-N. Lee, M.-H. Shih, A volume problem for an n-dimensional ellipsoid intersecting with a hyperplane, Linear Algebra Appl. 132 , 90–102 (1990) [Google Scholar]
  23. E.W. Weisstein, Ellipse − a Wolfram web resource (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.