Open Access
Review
Issue
Int. J. Metrol. Qual. Eng.
Volume 11, 2020
Article Number 13
Number of page(s) 16
DOI https://doi.org/10.1051/ijmqe/2020014
Published online 19 November 2020
  1. Coronavirus disease (COVID-19). (n.d.). World Health Organization. https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (retrieved October 17, 2020) [Google Scholar]
  2. Covid-19 disease (novel coronavirus). Covid-19 disease (novel coronavirus). (2020). Institut Pasteur. https://www.pasteur.fr/en/medical-center/disease-sheets/covid-19-disease-novel-coronavirus (retrieved October 8, 2020) [Google Scholar]
  3. S.A. Lauer, K.H. Grantz, Q. Bi, F.K. Jones, Q. Zheng, H.R. Meredith, J. Lessler, The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application, Ann. Intern. Med. 172 , 577–582 (2020) [CrossRef] [PubMed] [Google Scholar]
  4. J.A. Backer, D. Klinkenberg, J. Wallinga, Incubation period of2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020, Euro. Surveill. 25 (2020). https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062 [Google Scholar]
  5. C.B.E.M. Reusken, E.K. Broberg, B. Haagmans, A. Meijer, V.M. Corman, A. Papa, on behalf of EVD-LabNet and ERLI-Net, Laboratory readiness and response for novel coronavirus (2019-nCoV) in expert laboratories in 30 EU/EEA countries, January 2020, Euro. Surveill. 25 (2020). https://doi.org/10.2807/1560-7917.ES.2020.25.6.2000082 [Google Scholar]
  6. Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome. (2020). http://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2 [Google Scholar]
  7. Y. Wang, H. Kang, X. Liu, Z. Tong, Combination of RT‐qPCR testing and clinical features for diagnosis of COVID‐19 facilitates management of SARS‐CoV‐2 outbreak, J. Med. Virol. 92 , 538–539 (2020) [Google Scholar]
  8. A. Tahamtan, A. Ardebili, Real-time RT-PCR in COVID-19 detection: issues affecting the results, Expert Rev. Mol. Diagn. 20 , 453–454 (2020) [PubMed] [Google Scholar]
  9. C.-C. Lai, C.-Y. Wang, W.-C. Ko, P.-R. Hsueh, In vitro diagnostics of coronavirus disease 2019: Technologies and application, J. Microbiol. Immunol. Infect. S1684118220301407 (2020). https://doi.org/10.1016/j.jmii.2020.05.016 [Google Scholar]
  10. M.R. Green, J. Sambrook, Molecular cloning: a laboratory manual 4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2012. https://catalogue.nla.gov.au/Record/6039452/Details? [Google Scholar]
  11. M.L. Wong, J.F. Medrano, Real-time PCR for mRNA quantitation, BioTechniques 39 , 75–85 (2005) [CrossRef] [PubMed] [Google Scholar]
  12. M.J. Loeffelholz, Y.-W. Tang, Laboratory diagnosis of emerging human coronavirus infections − the state of the art, Emerg. Microbes Infect. 9 , 747–756 (2020) [Google Scholar]
  13. H. Wang, X. Li, T. Li, S. Zhang, L. Wang, X. Wu, J. Liu, The genetic sequence, origin, and diagnosis of SARS-CoV-2, Eur. J. Clin. Microbiol. Infect. Dis. 39 , 1629–1635 (2020) [CrossRef] [PubMed] [Google Scholar]
  14. Y.-W. Tang, J.E. Schmitz, D.H. Persing, C.W. Stratton, Laboratory diagnosis of COVID-19: Current issues and challenges, J. Clin. Microbiol. 58 , e00512–e00520 (2020) [PubMed] [Google Scholar]
  15. F. Yu, L. Yan, N. Wang, S. Yang, L. Wang, Y. Tang, F. Zhang, Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients, Clin. Infect. Dis. 71 , 793–798 (2020) [Google Scholar]
  16. Y. Pan, L. Long, D. Zhang, T. Yuan, S. Cui, P. Yang, S. Ren, Potential false-negative nucleic acid testing results for severe acute respiratory syndrome coronavirus 2 from thermal inactivation of samples with low viral loads, Clin. Chem. 66 , 794–801 (2020) [CrossRef] [PubMed] [Google Scholar]
  17. G. Lippi, A.-M. Simundic, M. Plebani, Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease2019 (COVID-19), Clin. Chem. Lab. Med. 58 , 1070–1076 (2020) [CrossRef] [PubMed] [Google Scholar]
  18. L.M. Kucirka, S.A. Lauer, O. Laeyendecker, D. Boon, J. Lessler, Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by time since exposure, Ann. Intern. Med. 173 , 262–267 (2020) [Google Scholar]
  19. R. Kubina, A. Dziedzic, Molecular and serological tests for COVID-19. A comparative review of SARS-CoV-2 coronavirus laboratory and point-of-care diagnostics, Diagnostics 10 , 434 (2020) [CrossRef] [Google Scholar]
  20. Coronavirus (COVID-19) Réactifs de diagnostic par RT-PCR du SARS-CoV-2, 2020. Ministère des Solidarités et de la Santé. https://solidarites-sante.gouv.fr/IMG/pdf/liste-reactifs-diagnostic-rt-pcr.pdf [Google Scholar]
  21. J. Lamoril, M. Bogard, N. Ameziane, J.-C. Deybach, P. Bouizegarène, Biologie moléculaire et microbiologie clinique en 2007, Immuno-anal. Biol. Spé. 22 , 5–18 (2007) [Google Scholar]
  22. S. Belouafa, F. Habti, S. Benhar, B. Belafkih, S. Tayane, S. Hamdouch, A. Abourriche, Statistical tools and approaches to validate analytical methods: methodology and practical examples, Int. J. Metrol. Qual. Eng. 8 , 9 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  23. ISO/IEC 17025:2017, 2020, ISO. https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/06/69/66912.html (retrieved September 1, 2020) [Google Scholar]
  24. ISO 15189:2012, 2020, ISO. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/61/56115.html (retrieved August 31, 2020) [Google Scholar]
  25. SH-GTA-04. Guide technique d'accreditation de verification (portee SH-GTA-04. Guide technique d'accreditation de verification (portee a) / validation (portee b) des methodes en biologie medicale. (n.d.). COFRAC. https://tools.cofrac.fr/documentation/SH-GTA-04 [Google Scholar]
  26. Mme BOCHEREAU Flora, 2018, Vérification en portée A d'une méthode de PCR en temps réel multiplexe: Chlamydia trachomatis, Neisseria gonorrhoeae et Mycoplasma genitalium (Thèse). PICARDIE JULES VERNE. https://dumas.ccsd.cnrs.fr/dumas-02019209/document [Google Scholar]
  27. Guide de validation des méthodes d'analyses, 2015, ANSES. https://www.anses.fr/fr/system/files/ANSES_GuideValidation.pdf [Google Scholar]
  28. ISO 1614 0-2:2016, ISO. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/48/54870.html (retrieved October 8, 2020) [Google Scholar]
  29. Validation des méthodes d'analyse Application à la microbiologie des eaux, 2015, AFNOR CERTIFICATION. https://nf-validation.afnor.org/wp-content/uploads/2014/04/NF148_Protocole-PCR-Legio_fr.pdf [Google Scholar]
  30. Codex Committee on Methods of Analysis and Sampling (CCMAS) | Food Safety. (n.d.). https://ec.europa.eu/food/safety/international_affairs/standard_setting_bodies/codex/ccmas_en (retrieved September 6, 2020) [Google Scholar]
  31. Eurachem Guides. (n.d.). https://www.eurachem.org/index.php/publications/guides (retrieved September 6, 2020) [Google Scholar]
  32. Guidelines on Performance Criteria and Validation of Methods for Detection, Identification and Quantification of Specific DNA Sequences and Specific Proteins in Foods*. (2010). Food and Agricultural Organization (FAO). http://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B74-2010%252FCXG_074e.pdf [Google Scholar]
  33. M. Thompson, S.l.R. Ellison, R. Wood, Harmonized guidelines for singlelaboratory validation of methods of analysis (iupac technical report). International union of pure and applied chemistry (IUPAC). (2002). http://publications.iupac.org/pac/2002/pdf/7405×0835.pdf [Google Scholar]
  34. ISO 21569:2005. ISO. https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/03/46/34614.html (retrievedSeptember 6, 2020) [Google Scholar]
  35. ISO 21570:2005. ISO. https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/03/46/34615.html (retrievedSeptember 6, 2020) [Google Scholar]
  36. ISO 24276:2006. ISO. https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/03/71/37125.html (retrievedSeptember 6, 2020) [Google Scholar]
  37. ISO 5725 -2:2019. ISO. https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/06/94/69419.html (retrieved September 6, 2020) [Google Scholar]
  38. ISO/TS 12869:2019. ISO. https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/07/07/70756.html (retrievedSeptember 6, 2020) [Google Scholar]
  39. ISO 20395:2019. ISO. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/78/67893.html (retrievedSeptember 6, 2020) [Google Scholar]
  40. S.A. Bustin, T. Nolan, RT-qPCR Testing of SARS-CoV-2: A Primer, Int. J. Mol. 21 , 3004 (2020) [CrossRef] [Google Scholar]
  41. A. Coskun, Modified Levey-Jennings charts for calculated laboratory tests, Clin. Chem. Lab. Med. 44 , 387–390 (2006) [PubMed] [Google Scholar]
  42. H. Rahman, I. Carter, K. Basile, L. Donovan, S. Kumar, T. Tran, J. Kok, Interpret with caution: An evaluation of the commercial AusDiagnostics versus in-house developed assays for the detection of SARS-CoV-2 virus, J. Clin. Virol. 127 , 104374 (2020) [CrossRef] [PubMed] [Google Scholar]
  43. K. Stanley, AusDiagnostics SARS-CoV-2 kits shown to be more sensitive than reference laboratory test, J. Clin. Virol. 129 , 104485 (2020) [CrossRef] [PubMed] [Google Scholar]
  44. Z. Iglói, M. leven, Z. Abdel-Karem Abou-Nouar, B. Weller, V. Matheeussen, J. Coppens, R. Molenkamp, Comparison of commercial realtime reverse transcription PCR assays for the detection of SARS-CoV-2, J. Clin. Virol. 129 , 104510 (2020) [CrossRef] [PubMed] [Google Scholar]
  45. K. Uhteg, J. Jarrett, M. Richards, C. Howard, E. Morehead, M. Geahr, H.H. Mostafa, Comparing the analytical performance of three SARS-CoV-2 molecular diagnostic assays, J. Clin. Virol. 127 , 104384 (2020) [CrossRef] [PubMed] [Google Scholar]
  46. C.A. Hogan, M.K. Sahoo, C. Huang, N. Garamani, B. Stevens, J. Zehnder, B.A. Pinsky, Five-minute point-of-care testing for SARS-CoV-2: Not there yet, J. Clin. Virol. 128 , 104410 (2020) [CrossRef] [PubMed] [Google Scholar]
  47. C.C.-Y. Yip, C.-C. Ho, J.F.-W. Chan, K.K.-W. To, H.S.-Y. Chan, S.C.-Y. Wong, K.-Y. Yuen, Development of a novel, genome subtraction-derived, SARS-CoV-2-specific COVID-19-nsp2 real-time RT-PCR assay and its evaluation using clinical specimens, Int. J. Mol. Sci. 21 , 2574 (2020) [Google Scholar]
  48. Y.H. Baek, J. Um, K.J.C. Antigua, J.-H. Park, Y. Kim, S. Oh, M.-S. Song, Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2, Emerg. Microbes Infect. 9 , 998–1007 (2020) [CrossRef] [PubMed] [Google Scholar]
  49. J.F.-W. Chan, C.C.-Y. Yip, K.K.-W. To, T.H.-C. Tang, S.C.-Y. Wong, K.-H. Leung, K.-Y. Yuen, Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens, J. Clin. Microbiol. 58 , e00310–e00320 (2020) [PubMed] [Google Scholar]
  50. S. Pfefferle, S. Reucher, D. Nörz, M. Lütgehetmann, Evaluation of a quantitative RT-PCR assay for the detection of the emerging coronavirus SARS-CoV-2 using a high throughput system, Euro. Surveill. 25 , 2000152 (2020) [Google Scholar]
  51. L. Bordi, A. Piralla, E. Lalle, F. Giardina, F. Colavita, M. Tallarita, M.R. Capobianchi, Rapid and sensitive detection of SARS-CoV-2 RNA using the SimplexaTM COVID-19 direct assay. J. Clin. Virol. 128 , 104416 (2020) [CrossRef] [PubMed] [Google Scholar]
  52. Quantitative Synthetic SARS-CoV-2 RNA: ORF, E, N (ATCC® VR- 3276 SDTM). (n.d.). ATCC. https://www.lgcstandards-atcc.org/products/all/VR-3276SD.aspx# (retrieved September 6, 2020) [Google Scholar]
  53. R. Kubina, A. Dziedzic, Molecular and serological tests for COVID-19. A comparative review of SARS-CoV-2 coronavirus laboratory and point-of-care diagnostics, Diagnostics 10 , 434 (2020) [CrossRef] [Google Scholar]
  54. V.M. Corman, O. Landt, M. Kaiser, R. Molenkamp, A. Meijer, D.K. Chu, C. Drosten, Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR, Euro. Surveill. 25 , 2000045 (2020) [Google Scholar]
  55. CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel For Emergency Use Only Instructions for Use, CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel For Emergency Use Only Instructions for Use, 2020, Centers for Disease Control and Prevention Division of Viral Diseases 1600 Clifton Rd NE Atlanta GA 30329. https://www.fda.gov/media/134922/download [Google Scholar]
  56. ePlex® SARS-CoV-2 Test Assay Manual. (n.d.). GenMarkDx. https://www.fda.gov/media/ ePlex® SARS-CoV-2 Test Assay Manual. (n.d.). GenMarkDx. https://www.fda.gov/media/136282/download [Google Scholar]
  57. Healthcare − Poll # 04-Effect of COVID-19 on healthcare access. (n.d.). https://www.surveygizmo.eu/s3/ Healthcare − Poll # 04–Effect of COVID-19 on healthcare access. (n.d.). https://www.surveygizmo.eu/s3/90258674/Healthcare-Poll-04-Effect-of-COVID-19-on-healthcare-access (retrieved September 6, 2020) [Google Scholar]
  58. SARS-CoV-2 diagnostic pipeline. (n.d.). FIND. https://www.finddx.org/covid-19/pipeline/ [Google Scholar]
  59. Xpert® Xpress SARS-CoV-2. (n.d.). Food and Drug Administration. https://www.fda.gov/media/ Xpert® Xpress SARS-CoV-2. (n.d.). Food and Drug Administration. https://www.fda.gov/media/136315/download [Google Scholar]
  60. C.C.-Y. Yip, S. Sridhar, A.K.-W. Cheng, K.-H. Leung, G.K.-Y. Choi, J.H.-K. Chen, J.F.-W. Chan, Evaluation of the commercially available LightMix® Modular E-gene kit using clinical and proficiency testing specimens for SARS-CoV-2 detection, J. Clin. Virol. 129 , 104476 (2020) [CrossRef] [PubMed] [Google Scholar]
  61. AllplexTM 2019 -nCoV Assay (version 2.0; July 24th,2020) (Cat no. RP10243X / RP10252W) Instructions for Use. (n.d.). Seegene. https://www.fda.gov/media/137178/download [Google Scholar]
  62. TaqPath TaqPathTM COVID-19 Combo Kit INSTRUCTIONS FOR USE. (n.d.). ThermoFisher. https://www.fda.gov/media/136112/download [Google Scholar]
  63. Products-Dynamiker Biotechnology (Tianjin) Co., Ltd. (n.d.). Products-Dynamiker Biotechnology (Tianjin) Co., Ltd. (n.d.). http://en.dynamiker.com/index/index/pro_info/aid/605.html (retrievedSeptember 6, 2020) [Google Scholar]
  64. BioFire ® COVID-19 Test Instructions for Use. (n.d.). BioFire Defense, LLC. https://www.fda.gov/media/ BioFire ® COVID-19 Test Instructions for Use. (n.d.). BioFire Defense, LLC. https://www.fda.gov/media/136353/download [Google Scholar]
  65. Abbott Launches Molecular Point-of-Care Test to Detect Novel Coronavirus in as Little as Five Minutes. (n.d.). Abbott Launches Molecular Point-of-Care Test to Detect Novel Coronavirus in as Little as Five Minutes. (n.d.). Abbott MediaRoom. https://abbott.mediaroom.com/2020-03-27-Abbott-Launches-Molecular-Point-of-Care-Test-to-Detect-Novel-Coronavirus-in-as-Little-as-Five-Minutes (retrieved September 6, 2020) [Google Scholar]
  66. J.J. LeBlanc, J.B. Gubbay, Y. Li, R. Needle, S.R. Arneson, D. Marcino, N. Bastien, Real-time PCR-based SARS-CoV-2 detection in Canadian laboratories, J. Clin. Virol. 128 , 104433 (2020) [CrossRef] [PubMed] [Google Scholar]
  67. T. Ishige, S. Murata, T. Taniguchi, A. Miyabe, K. Kitamura, K. Kawasaki, K. Matsushita, Highly sensitive detection of SARS-CoV-2 RNA by multiplex rRT-PCR for molecular diagnosis of COVID-19 by clinical laboratories, Clinica Chimica Acta. 507 , 139–142 (2020) [Google Scholar]
  68. C.-J. Chen, L.-L. Hsieh, S.-K. Lin, C.-F. Wang, Y.-H. Huang, S.-Y. Lin, P.-L. Lu, Optimization of the CDC Protocol of Molecular Diagnosis of COVID-19 for Timely Diagnosis, Diagnostics 10 , 333 (2020) [CrossRef] [Google Scholar]
  69. A.C. Nelson, B. Auch, M. Schomaker, D.M. Gohl, P. Grady, D. Johnson, S. Yohe, Analytical validation of a COVID-19 qRT-PCR detection assay using a 384-well format and three extraction methods. bioRxiv, 2020.04.02.022186 (2020) [Google Scholar]
  70. J. Alcoba-Florez, R. González-Montelongo, A. Íñigo-Campos, D.G.-M. de Artola, H. Gil-Campesino, The Microbiology Technical Support Team, C. Flores, Fast SARS-CoV-2 detection by RT-qPCR in preheated nasopharyngeal swab samples, Int. J. Infect. Dis. 97 , 66–68 (2020) [CrossRef] [PubMed] [Google Scholar]
  71. T. Fukumoto, S. Iwasaki, S. Fujisawa, K. Hayasaka, K. Sato, S. Oguri, T. Teshima, Efficacy of a novel SARS-CoV-2 detection kit without RNA extraction and purification, Int. J. Infect. Dis. 98 , 16–17 (2020) [CrossRef] [PubMed] [Google Scholar]
  72. J. Cui, F. Li, Z.-L. Shi, Origin and evolution of pathogenic coronaviruses, Nat. Rev. Microbiol. 17 , 181–192 (2019) [CrossRef] [PubMed] [Google Scholar]
  73. J.F.-W. Chan, S. Yuan, K.-H. Kok, K.K.-W. To, H. Chu, J. Yang, K.-Y. Yuen, A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster, The Lancet 395 , 514–523 (2020) [CrossRef] [PubMed] [Google Scholar]
  74. R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Tan, Genomic characterisation and epidemiology of2019 novel coronavirus: implications for virus origins and receptor binding, The Lancet 395 , 565–574 (2020) [CrossRef] [PubMed] [Google Scholar]
  75. H. Colton, M. Ankcorn, M. Yavuz, L. Tovey, A. Cope, M. Raza, C. Evans, Improved sensitivity using a dual target, E and RdRp assay for the diagnosis of SARS-CoV-2 infection: Experience at a large NHS Foundation Trust in the UK, J. Infect. S016344532030339X (2020). https://doi.org/10.1016/j.jinf.2020.05.061 [Google Scholar]
  76. T. Toptan, S. Hoehl, S. Westhaus, D. Bojkova, A. Berger, B. Rotter, M. Widera, Optimized qRT-PCR approach for the detection of intra- and extra-cellular SARS-CoV-2 RNAs, Int. J. Mol. Sci. 21 , 4396 (2020) [Google Scholar]
  77. D.E. Tadini, M. Papamidimitriou-Olivgeris, O. Opota, E. Moulin, F. Lamoth, O. Manuel, L. Senn, SARS-CoV-2, un point dans la tourmente. REVUE MÉDICALE SUISSE 7 (2020) [Google Scholar]
  78. V.M. Corman, O. Landt, M. Kaiser, R. Molenkamp, A. Meijer, D.K. Chu, C. Drosten, Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR, Euro. Surveill. 25 , 2000045 (2020) [Google Scholar]
  79. Z. Shen, Y. Xiao, L. Kang, W. Ma, L. Shi, L. Zhang, M. Li, Genomic diversity of severe acute respiratory syndrome–coronavirus 2 in patients with coronavirus disease 2019, Clin. Infect. Dis. 71 , 713–720 (2020) [CrossRef] [PubMed] [Google Scholar]
  80. D.A. Álvarez-Díaz, C. Franco-Muñoz, K. Laiton-Donato, J.A. Usme-Ciro, N.D. Franco-Sierra, A.C. Flórez-Sánchez, M. Mercado-Reyes, Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia, Infect. Genet. Evol. 84 , 104390 (2020) [Google Scholar]
  81. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases. (2020, September 6). World Health Organization. https://www.who.int/publications-detail-redirect/10665-331501 (retrieved September 7, 2020) [Google Scholar]
  82. W. Wang, Y. Xu, R. Gao, R. Lu, K. Han, G. Wu, W. Tan, Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. (2020). https://doi.org/10.1001/jama.2020.3786 [Google Scholar]
  83. A. Piras, D. Rizzo, S. Uzzau, G. De Riu, S. Rubino, F. Bussu, Inappropriate nasopharyngeal sampling for SARS-CoV-2 detection is a relevant cause of false-negative reports, Otolaryngol. Head Neck Surg. (2020). https://doi.org/10.1177/0194599820931793 [Google Scholar]
  84. Y. Li, L. Yao, J. Li, L. Chen, Y. Song, Z. Cai, C. Yang, Stability issues of RT‐PCR testing of SARS‐CoV‐2 for hospitalized patients clinically diagnosed with COVID‐19, J. Med. Virol. 92 , 903–908 (2020) [Google Scholar]
  85. S. Saurabh, R. Kumar, M.K. Gupta, P. Bhardwaj, V.L. Nag, M.K. Garg, S. Misra, Prolonged persistence of SARS-CoV-2 in the upper respiratory tract of asymptomatic infected individuals, QJM: Int. J. Med. 113 , 556–560 (2020) [Google Scholar]
  86. Interim Guidelines for Collecting, Handling, and Testing Clinical Specimens from Persons for Coronavirus Disease 2019 (COVID-19). CDC, 2020, Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specimens.html (retrieved September 7, 2020) [Google Scholar]
  87. S. Bustin, The continuing problem of poor transparency of reporting and use of inappropriate methods for RT-qPCR, Biomolecular Detection and Quantification 12 , 7–9 (2017) [CrossRef] [PubMed] [Google Scholar]
  88. S.A. Bustin, V. Benes, J.A. Garson, J. Hellemans, J. Huggett, M. Kubista, C.T. Wittwer, The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments, Clin. Chem. 55 , 611–622 (2009) [CrossRef] [PubMed] [Google Scholar]
  89. Coronavirus Standards Working Group. (n.d.). The Joint Initiative for Metrology in Biology. https://jimb.stanford.edu/covid-19-standards (retrieved September 7, 2020) [Google Scholar]
  90. Novel Coronavirus | EVAg. (n.d.). https://www.european-virus-archive.com/evag-news/novel-coronavirus (retrieved September 7, 2020) [Google Scholar]
  91. A. Charki, F. Pavese, Data comparisons and uncertainty: a roadmap for gaining in competence and improving the reliability of results, International Journal of Metrology and Quality Engineering 10, (2019) [EDP Sciences] [Google Scholar]
  92. D. Crowe, COVID-19 La grande illusion des tests PCR, NéoSanté, (n°101), 4–11 (2020) [Google Scholar]
  93. N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, W. Tan, A Novel Coronavirus from Patients with Pneumonia in China, 2019, N. Engl. J. Med. 382 , 727–733 (2020) [Google Scholar]
  94. C.R. Paden, Y. Tao, K. Queen, J. Zhang, Y. Li, A. Uehara, S. Tong, Early release − rapid, sensitive, full-genome sequencing of severe acute respiratory syndrome coronavirus 2, Emerg. Infect. Dis. 26 , (2020) [Google Scholar]
  95. M. Xiao, X. Liu, J. Ji, M. Li, J. Li, L. Yang, J. Li, Multiple approaches for massively parallel sequencing of SARS-CoV-2 genomes directly from clinical samples, Genome Med. 12 , 57 (2020) [CrossRef] [PubMed] [Google Scholar]
  96. Y. Li, L. Yao, J. Li, L. Chen, Y. Song, Z. Cai, C. Yang, Stability issues of RT‐PCR testing of SARS‐CoV‐2 for hospitalized patients clinically diagnosed with COVID‐19, J. Med. Virol. 92 , 903–908 (2020) [Google Scholar]
  97. J.P. Broughton, X. Deng, G. Yu, C.L. Fasching, V. Servellita, J. Singh, C.Y. Chiu, CRISPR–Cas12-based detection of SARS-CoV-2, Nat. Biotechnol. 38 , 870–874 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.