Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 10, 2019
Article Number 3
Number of page(s) 8
DOI https://doi.org/10.1051/ijmqe/2019003
Published online 18 April 2019
  1. M.G. Cox, The evaluation of key comparison data, Metrologia 39 , 589–595 (2002) [Google Scholar]
  2. R.T. Birge, Probable values of the general physical constants, Rev. Mod. Phys. 1 , 1–73 (1929) [Google Scholar]
  3. A.G. Chunovkina, C. Elster, I. Lira, W. Wöger, Analysis of key comparison data and laboratory biases, Metrologia 45 , 211–216 (2008) [Google Scholar]
  4. M.G. Cox, A.B. Forbes, J. Flowers, P.M. Harris, Least squares adjustment in the presence of discrepant data, in Advanced Mathematical and Computational Tools in Metrology VI , edited by P. Ciarlini, M.G. Cox, F. Pavese, G.B. Rossi (World Scientific, Singapore, 2004), pp. 37–51 [CrossRef] [Google Scholar]
  5. M.G. Cox, The evaluation of key comparison data: determining the largest consistent subset, Metrologia 44 , 187–200 (2007) [Google Scholar]
  6. C. Elster, B. Toman, Analysis of key comparisons: estimating laboratories' biases by a fixed effects model using Bayesian model averaging, Metrologia 47 , 113–119 (2010) [Google Scholar]
  7. A.B. Forbes, C. Perruchet. Measurement systems analysis: concepts and computational approaches, in IMEKO World Congress, Rio de Janeiro, September 18–22, 2006 [Google Scholar]
  8. R.C. Paule, J. Mandel, Consensus values and weighting factors, J. Res. Natl. Bur. Stand. 87 , 377–385 (1982) [CrossRef] [Google Scholar]
  9. K. Weise, W. Woeger, Removing model and data non-conformity in measurement evaluation, Meas. Sci. Technol. 11 , 1649–1658 (2000) [Google Scholar]
  10. R. Willink, Statistical determination of a comparison reference value using hidden errors, Metrologia 39 , 343–354 (2002) [Google Scholar]
  11. S. Thompson, S. Ellison, Dark uncertainty, Accredit. Qual. Assur. 16 , 483–487 (2011) [CrossRef] [Google Scholar]
  12. J.O. Berger, in Statistical decision theory and Bayesian analysis , 2nd edn. (Springer, New York, 1985) [CrossRef] [Google Scholar]
  13. H. Chipman, E.I. George, R.E. McCulloch, The practical implementation of Bayesian model selection (Institute of Mathematical Statistics, Beachwood, Ohio, 2001) [Google Scholar]
  14. A.B. Forbes, Traceable measurements using sensor networks, Trans. Mach. Learning Data Mining 8 , 77–100 (2015) [Google Scholar]
  15. S. Kullback, R.A. Leibler, On information and sufficiency, Ann. Math. Stat. 55 , 79–86 (1951) [CrossRef] [MathSciNet] [Google Scholar]
  16. D.J.C. MacKay, Information theory, inference and learning algorithms (Cambridge University Press, Cambridge, 2003) [Google Scholar]
  17. P.E. Gill, W. Murray, M.H. Wright, Practical optimization (Academic Press, London, 1981) [Google Scholar]
  18. O. Bodnar, C. Elster, J. Fischer, A. Possolo, B. Toman, Evaluation of uncertainty in the adjustment of fundamental constants, Metrologia 53 , S46–S54 (2016) [Google Scholar]
  19. Thalmann R. CCL key comparison: calibration of gauge blocks by interferometry, Metrologia 39 , 165 (2002) [Google Scholar]
  20. R. Thalmann. CCL key comparison: calibration of gauge blocks by interferometry, Metrologia 39 , 165–177 (2002) [Google Scholar]
  21. A.B. Forbes, A hierarchical model for the analysis of inter-laboratory comparison data, Metrologia 53 , 1295–1305 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.