Open Access
Review
Issue
Int. J. Metrol. Qual. Eng.
Volume 8, 2017
Article Number 17
Number of page(s) 15
DOI https://doi.org/10.1051/ijmqe/2017015
Published online 30 May 2017
  1. A. Azari, S. Nikzad, The evolution of rapid prototyping in dentistry: a review, Rapid Prototyp. J. 15, 216–225 (2009) [CrossRef] [Google Scholar]
  2. ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies (ASTM International, West Conshohocken, PA, 2012) [Google Scholar]
  3. I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (Springer, New York, NY, 2014) [Google Scholar]
  4. M. Vaezi, H. Seitz, S. Yang, A review on 3D micro-additive manufacturing technologies, Int. J. Adv. Manuf. Technol. 67, 1721–1754 (2013) [CrossRef] [Google Scholar]
  5. H. Wijshoff, The dynamics of the piezo inkjet printhead operation, Phys. Rep. 491, 77–177 (2010) [CrossRef] [Google Scholar]
  6. J.-P. Kruth, M. Bartscher, S. Carmignato, R. Schmitt, L. De Chiffre, A. Weckenmann, Computed tomography for dimensional metrology, CIRP Ann. Manuf. Technol. 60, 821–842 (2011) [CrossRef] [Google Scholar]
  7. L. De Chiffre, S. Carmignato, J.-P. Kruth, R. Schmitt, A. Weckenmann, Industrial applications of computed tomography, CIRP Ann. Manuf. Technol. 63, 655–677 (2014) [CrossRef] [Google Scholar]
  8. A. Thompson, I. Maskery, R.K. Leach, X-ray computed tomography for additive manufacturing: a review, Meas. Sci. Technol. 27, 072001 (2016) [CrossRef] [Google Scholar]
  9. J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE Press, Bellingham, WA, 2009) [Google Scholar]
  10. L. Roscoe, Stereolithography Interface Specification (3D Systems Inc., Rock Hill, SC, USA, 1988) [Google Scholar]
  11. C.W. Hull, Apparatus for Production of Three-Dimensional Objects by Stereolithography, US 4575330 A, 1986 [Google Scholar]
  12. N.J. Mankovich, A.M. Cheeseman, N.G. Stoker, The display of three-dimensional anatomy with stereolithographic models, J. Digit. Imaging 3, 200–203 (1990) [CrossRef] [PubMed] [Google Scholar]
  13. H. Klein, W. Schneider, G. Alzen, E. Voy, R. Günther, Pediatric craniofacial surgery: comparison of milling and stereolithography for 3D model manufacturing, Pediatr. Radiol. 22, 458–460 (1992) [CrossRef] [PubMed] [Google Scholar]
  14. S. Bresina, M. Vannier, S. Tepic, S. Perren, Automated production of custom bone replacements, in Proceedings of the 12th Annual internation conferenence of the IEEE Engineering in Medicine and Biology Society (EMBS) (IEEE, Philadelphia, PA, 1990), pp. 385–386 [Google Scholar]
  15. R.A. Levy, S. Guduri, R.H. Crawford, Preliminary experience with selective laser sintering models of the human temporal bone, Am. J. Neuroradiol. 15, 473–477 (1994) [Google Scholar]
  16. G. Lee, J. Barlow, Selective laser sintering of calcium phosphate powders, in Solid Freeform Fabrication Symposium Proceedings (University of Texas Austin, Austin, TX, 1994), pp. 191–197 [Google Scholar]
  17. I. Pomerantz, J. Cohen-Sabban, A. Bieber, J. Kamir, M. Katz, M. Nagler, Three Dimensional Modelling Apparatus, US 5031120 A, 1991 [Google Scholar]
  18. D.J. Fink, S.T. DiNovo, T.J. Ward, Rapid, Customized Bone Prosthesis, US 5370692 A, 1994 [Google Scholar]
  19. S. Ashley, Rapid prototyping for artificial body parts, Mech. Eng. 115, 50–53 (1993) [Google Scholar]
  20. P.S. D'Urso, Stereolithographic Anatomical Modelling Process, US 5741215 A, 1998 [Google Scholar]
  21. R. Petzold, H.-F. Zeilhofer, W. Kalender, Rapid prototyping technology in medicine—basics and applications, Comput. Med. Imaging Graph. 23, 277–284 (1999) [CrossRef] [PubMed] [Google Scholar]
  22. P. D'Urso, R. Thompson, W. Earwaker, Stereolithographic (SL) biomodelling in palaeontology: a technical note, Rapid Prototyp. J. 6, 212–216 (2000) [CrossRef] [Google Scholar]
  23. R. Bibb, G. Sisias, Bone structure models using stereolithography: a technical note, Rapid Prototyp. J. 8, 25–29 (2002) [CrossRef] [Google Scholar]
  24. O.L. Harrysson, D.R. Cormier, D.J. Marcellin-Little, K. Jajal, Rapid prototyping for treatment of canine limb deformities, Rapid Prototyp. J. 9, 37–42 (2003) [CrossRef] [Google Scholar]
  25. P. Lermusiaux, C. Leroux, J.C. Tasse, L. Castellani, R. Martinez, Aortic aneurysm: construction of a life-size model by rapid prototyping, Ann. Vasc. Surg. 15, 131–135 (2001) [CrossRef] [PubMed] [Google Scholar]
  26. E. Berry, A. Marsden, K. Dalgarno, D. Kessel, D. Scott, Flexible tubular replicas of abdominal aortic aneurysms, Proc. Inst. Mech. Eng. H: J. Eng. Med. 216, 211–214 (2002) [CrossRef] [Google Scholar]
  27. S. Gopakumar, RP in medicine: a case study in cranial reconstructive surgery, Rapid Prototyp. J. 10, 207–211 (2004) [CrossRef] [Google Scholar]
  28. J. Winder, R. Bibb, Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery, J. Oral Maxillofac. Surg. 63, 1006–1015 (2005) [CrossRef] [PubMed] [Google Scholar]
  29. D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials 21, 2529–2543 (2000) [CrossRef] [PubMed] [Google Scholar]
  30. W. Sun, P. Lal, Recent development on computer aided tissue engineering—a review, Comput. Methods Programs Biomed. 67, 85–103 (2002) [CrossRef] [PubMed] [Google Scholar]
  31. D.W. Hutmacher, M. Sittinger, M.V. Risbud, Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems, Trends Biotechnol. 22, 354–362 (2004) [CrossRef] [PubMed] [Google Scholar]
  32. D.A. Hollander, T. Wirtz, M. von Walter, R. Linker, A. Schultheis, O. Paar, Development of individual three-dimensional bone substitutes using “selective laser melting”, Eur. J. Trauma 29, 228–234 (2003) [CrossRef] [Google Scholar]
  33. M. Wehmöller, P. Warnke, C. Zilian, H. Eufinger, Implant design and production—a new approach by selective laser melting, in International Congress Series (Elsevier, Berlin, 2005), pp. 690–695 [CrossRef] [Google Scholar]
  34. S. Das, S.J. Hollister, C. Flanagan, A. Adewunmi, K. Bark, C. Chen et al., Freeform fabrication of nylon-6 tissue engineering scaffolds, Rapid Prototyp. J. 9, 43–49 (2003) [CrossRef] [Google Scholar]
  35. F. Wang, L. Shor, A. Darling, S. Khalil, W. Sun, S. Güçeri et al., Precision extruding deposition and characterization of cellular poly-ε-caprolactone tissue scaffolds, Rapid Prototyp. J. 10, 42–49 (2004) [CrossRef] [Google Scholar]
  36. J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg et al., Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering, Biomaterials 26, 4817–4827 (2005) [CrossRef] [PubMed] [Google Scholar]
  37. D.A. Hollander, M. Von Walter, T. Wirtz, R. Sellei, B. Schmidt-Rohlfing, O. Paar et al., Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming, Biomaterials 27, 955–963 (2006) [CrossRef] [PubMed] [Google Scholar]
  38. M. Suzuki, A. Hagiwara, Y. Ogawa, H. Ono, Rapid-prototyped temporal bone and inner-ear models replicated by adjusting computed tomography thresholds, J. Laryngol. Otol. 121, 1025–1028 (2007) [CrossRef] [PubMed] [Google Scholar]
  39. J.A. Henry, G. O'Sullivan, A.S. Pandit, Using computed tomography scans to develop an ex-vivo gastric model, World J. Gastroenterol. 13, 1372–1377 (2007) [CrossRef] [PubMed] [Google Scholar]
  40. E.K. Sannomiya, J.V.L. Silva, A.A. Brito, D.M. Saez, F. Angelieri, G. da Silva Dalben, Surgical planning for resection of an ameloblastoma and reconstruction of the mandible using a selective laser sintering 3D biomodel, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 106, e36–e40 (2008) [CrossRef] [Google Scholar]
  41. S. Singare, Q. Lian, W. Ping Wang, J. Wang, Y. Liu, D. Li et al., Rapid prototyping assisted surgery planning and custom implant design, Rapid Prototyp. J. 15, 19–23 (2009) [CrossRef] [Google Scholar]
  42. R. Bibb, J. Winder, A review of the issues surrounding three-dimensional computed tomography for medical modelling using rapid prototyping techniques, Radiography 16, 78–83 (2010) [CrossRef] [Google Scholar]
  43. M. Wanibuchi, M. Ohtaki, T. Fukushima, A.H. Friedman, K. Houkin, Skull base training and education using an artificial skull model created by selective laser sintering, Acta Neurochir. 152, 1055–1060 (2010) [CrossRef] [Google Scholar]
  44. I. Gibson, L. Cheung, S. Chow, W. Cheung, S. Beh, M. Savalani et al., The use of rapid prototyping to assist medical applications, Rapid Prototyp. J. 12, 53–58 (2006) [CrossRef] [Google Scholar]
  45. S.J. Hollister, Porous scaffold design for tissue engineering, Nat. Mater. 4, 518–524 (2005) [CrossRef] [PubMed] [Google Scholar]
  46. B.V. Krishna, S. Bose, A. Bandyopadhyay, Low stiffness porous Ti structures for load-bearing implants, Acta Biomater. 3, 997–1006 (2007) [CrossRef] [Google Scholar]
  47. L. Murr, S. Gaytan, F. Medina, H. Lopez, E. Martinez, B. Machado et al., Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays, Philos. Trans. R. Soc. A 368, 1999–2032 (2010) [CrossRef] [Google Scholar]
  48. A. Mazzoli, G. Moriconi, M.G. Pauri, Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering, Mater. Des. 28, 993–1000 (2007) [CrossRef] [Google Scholar]
  49. G. Dinda, L. Song, J. Mazumder, Fabrication of Ti-6Al-4V scaffolds by direct metal deposition, Metall. Mater. Trans. A 39, 2914–2922 (2008) [CrossRef] [Google Scholar]
  50. M.C. Faustini, R.R. Neptune, R.H. Crawford, S.J. Stanhope, Manufacture of passive dynamic ankle-foot orthoses using selective laser sintering, IEEE Trans. Bio-Med. Eng. 55, 784–790 (2008) [CrossRef] [Google Scholar]
  51. R. Goodridge, K. Dalgarno, D. Wood, Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications, Proc. Inst. Mech. Eng. H: J. Eng. Med. 220, 57–68 (2006) [CrossRef] [Google Scholar]
  52. R.D. Goodridge, D.J. Wood, C. Ohtsuki, K.W. Dalgarno, Biological evaluation of an apatite-mullite glass-ceramic produced via selective laser sintering, Acta Biomater. 3, 221–231 (2007) [CrossRef] [Google Scholar]
  53. C.Y. Lin, T. Wirtz, F. LaMarca, S.J. Hollister, Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process, J. Biomed. Mater. Res. A 83, 272–279 (2007) [CrossRef] [PubMed] [Google Scholar]
  54. H. Saijo, K. Igawa, Y. Kanno, Y. Mori, K. Kondo, K. Shimizu et al., Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology, J. Artif. Organs 12, 200–205 (2009) [CrossRef] [PubMed] [Google Scholar]
  55. L. Moroni, G. Poort, F. Van Keulen, J. De Wijn, C. Van Blitterswijk, Dynamic mechanical properties of 3D fiber-deposited PEOT/PBT scaffolds: an experimental and numerical analysis, J. Biomed. Mater. Res. A 78, 605–614 (2006) [CrossRef] [PubMed] [Google Scholar]
  56. M. Smith, C. Flanagan, J. Kemppainen, J. Sack, H. Chung, S. Das et al., Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery, Int. J. Med. Robot. Comput. Assist. Surg. 3, 207–216 (2007) [CrossRef] [Google Scholar]
  57. B. Lethaus, L. Poort, R. Böckmann, R. Smeets, R. Tolba, P. Kessler, Additive manufacturing for microvascular reconstruction of the mandible in 20 patients, J. Craniomaxillofac. Surg. 40, 43–46 (2012) [CrossRef] [PubMed] [Google Scholar]
  58. J. Appleby, P.D. Mitchell, C. Robinson, A. Brough, G. Rutty, R.A. Harris et al., The scoliosis of Richard III, last Plantagenet King of England: diagnosis and clinical significance, Lancet 383, 1944 (2014) [CrossRef] [PubMed] [Google Scholar]
  59. M. Figliuzzi, F. Mangano, C. Mangano, A novel root analogue dental implant using CT scan and CAD/CAM: selective laser melting technology, Int. J. Oral Maxillofac. Surg. 41, 858–862 (2012) [CrossRef] [PubMed] [Google Scholar]
  60. F. Mangano, M. Bazzoli, L. Tettamanti, D. Farronato, M. Maineri, A. Macchi et al., Custom-made, selective laser sintering (SLS) blade implants as a non-conventional solution for the prosthetic rehabilitation of extremely atrophied posterior mandible, Lasers Med. Sci. 28, 1241–1247 (2013) [CrossRef] [PubMed] [Google Scholar]
  61. Y.-J. Seol, T.-Y. Kang, D.-W. Cho, Solid freeform fabrication technology applied to tissue engineering with various biomaterials, Soft Matter 8, 1730–1735 (2012) [CrossRef] [Google Scholar]
  62. A. Mazzoli, Selective laser sintering in biomedical engineering, Med. Biol. Eng. Comput. 51, 245–256 (2013) [CrossRef] [PubMed] [Google Scholar]
  63. T. Igami, Y. Nakamura, T. Hirose, T. Ebata, Y. Yokoyama, G. Sugawara et al., Application of a three-dimensional print of a liver in hepatectomy for small tumors invisible by intraoperative ultrasonography: preliminary experience, World J. Surg. 38, 3163–3166 (2014) [CrossRef] [PubMed] [Google Scholar]
  64. H. Choi, G. Go, C. Lee, S.Y. Ko, S. Jeong, K. Kwon et al., Electromagnetic actuation system for locomotive intravascular therapeutic microrobot, in 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (IEEE, São Paulo, 2014), pp. 831–834 [CrossRef] [Google Scholar]
  65. D. Schmauss, S. Haeberle, C. Hagl, R. Sodian, Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience, Eur. J. Cardiothorac. Surg. 47, 1–9 (2014) [EDP Sciences] [PubMed] [Google Scholar]
  66. A. Nojiri, H. Akiyoshi, F. Ohashi, A. Ijiri, O. Sawase, T. Matsushita et al., Treatment of a unicameral bone cyst in a dog using a customized titanium device, J. Vet. Med. Sci. 77, 127 (2015) [CrossRef] [PubMed] [Google Scholar]
  67. R. Mayer, P. Liacouras, A. Thomas, M. Kang, L. Lin, C.B. Simone II, 3D printer generated thorax phantom with mobile tumor for radiation dosimetry, Rev. Sci. Instrum. 86, 074301 (2015) [CrossRef] [PubMed] [Google Scholar]
  68. M.P. Chae, D.J. Hunter-Smith, A. Rizzitelli, R.T. Spychal, W.M. Rozen, 3D volumetric analysis and haptic modeling for preoperative planning in breast reconstruction, Anaplastology 4, 138 (2015) [Google Scholar]
  69. K. Kondo, M. Nemoto, H. Masuda, S. Okonogi, J. Nomoto, N. Harada et al., Anatomical reproducibility of a head model molded by a three-dimensional printer, Neurol. Med. Chir. 55, 592–598 (2015) [CrossRef] [Google Scholar]
  70. Y. Luo, Y. Wang, B.L. Tai, R.K. Chen, A.J. Shih, Bone geometry on the contact stress in the shoulder for evaluation of pressure ulcers: finite element modeling and experimental validation, Med. Eng. Phys. 37, 187–194 (2015) [CrossRef] [PubMed] [Google Scholar]
  71. N. Kiarashi, A.C. Nolte, G.M. Sturgeon, W.P. Segars, S.V. Ghate, L.W. Nolte et al., Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data, Med. Phys. 42, 4116–4126 (2015) [CrossRef] [PubMed] [Google Scholar]
  72. S. Isotani, Editorial comment from Dr Isotani to three-dimensional printing in urological surgery: what are the possibilities? Int. J. Urol. 22, 424 (2015) [CrossRef] [Google Scholar]
  73. K. Oyama, L.F. Ditzel Filho, J. Muto, D.G. de Souza, R. Gun, B.A. Otto et al., Endoscopic endonasal cranial base surgery simulation using an artificial cranial base model created by selective laser sintering, Neurosurg. Rev. 38, 171–178 (2015) [CrossRef] [PubMed] [Google Scholar]
  74. M.P. Chae, D.J. Hunter-Smith, I. De-Silva, S. Tham, R.T. Spychal, W.M. Rozen, Four-dimensional (4D) printing: a new evolution in computed tomography-guided stereolithographic modeling. Principles and application, J. Reconstr. Microsurg. 31, 458–463 (2015) [CrossRef] [PubMed] [Google Scholar]
  75. M. Rana, C.H. Chui, M. Wagner, R. Zimmerer, M. Rana, N.-C. Gellrich, Increasing the accuracy of orbital reconstruction with selective laser-melted patient-specific implants combined with intraoperative navigation, J. Oral Maxillofac. Surg. 73, 1113–1118 (2015) [CrossRef] [PubMed] [Google Scholar]
  76. M. Knoedler, A.H. Feibus, A. Lange, M.M. Maddox, E. Ledet, R. Thomas et al., Individualized physical 3-dimensional kidney tumor models constructed from 3-dimensional printers result in improved trainee anatomic understanding, Urology 85, 1257–1262 (2015) [CrossRef] [PubMed] [Google Scholar]
  77. M. Kusaka, M. Sugimoto, N. Fukami, H. Sasaki, M. Takenaka, T. Anraku et al., Initial experience with a tailor-made simulation and navigation program using a 3-D printer model of kidney transplantation surgery, Transplant. Proc. 47, 596–599 (2015) [CrossRef] [PubMed] [Google Scholar]
  78. S.T. Bache, T. Juang, M.D. Belley, B.F. Koontz, J. Adamovics, T.T. Yoshizumi et al., Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters, Med. Phys. 42, 846–855 (2015) [CrossRef] [PubMed] [Google Scholar]
  79. A.S. Rose, J.S. Kimbell, C.E. Webster, O.L. Harrysson, E.J. Formeister, C.A. Buchman, Multi-material 3D models for temporal bone surgical simulation, Ann. Otol. Rhinol. Laryngol. 124, 528–536 (2015) [CrossRef] [Google Scholar]
  80. H. Kenngott, J. Wünscher, M. Wagner, A. Preukschas, A. Wekerle, P. Neher et al., OpenHELP (Heidelberg laparoscopy phantom): development of an open-source surgical evaluation and training tool, Surg. Endosc. 29, 1–10 (2015) [Google Scholar]
  81. J.-C. Bernhard, S. Isotani, T. Matsugasumi, V. Duddalwar, A.J. Hung, E. Suer et al., Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education, World J. Urol. 34, 337–345 (2015) [CrossRef] [PubMed] [Google Scholar]
  82. M. Azimi, E.A. Nasr, Predictive modeling of tumors using RP, in International Conference on Industrial Engineering and Operations Management (IEOM) (IEEE, Dubai, 2015), pp. 1–8 [Google Scholar]
  83. A.-M. Wu, Z.-X. Shao, J.-S. Wang, X.-D. Yang, W.-Q. Weng, X.-Y. Wang et al., The accuracy of a method for printing three-dimensional spinal models, PLOS ONE 10, e0124291 (2015) [CrossRef] [PubMed] [Google Scholar]
  84. S. Gokce, S. Gorgulu, U. Karacayli, H. Gokce, B. Battal, Three-dimensional evaluation of nasal and pharyngeal airway after Le Fort I maxillary distraction osteogenesis, Int. J. Oral Maxillofac. Surg. 44, 455–461 (2015) [CrossRef] [PubMed] [Google Scholar]
  85. H. Sakai, Y. Watanabe, T. Sera, H. Yokota, G. Tanaka, Visualization of particle deposition in human nasal cavities, J. Vis. 18, 349–357 (2015) [CrossRef] [Google Scholar]
  86. J.R. Haaga, D. Boll, Computed Tomography & Magnetic Resonance Imaging of the Whole Body (Elsevier, Amsterdam, 2016), 6th ed. [Google Scholar]
  87. A. Marro, T. Bandukwala, W. Mak, Three-dimensional printing and medical imaging: a review of the methods and applications, Curr. Probl. Diagn. Radiol. 45, 2–9 (2016) [CrossRef] [PubMed] [Google Scholar]
  88. G. Orentlicher, A. Horowitz, D. Goldsmith, R. Delgado-Ruiz, M. Abboud, Cumulative survival rate of implants placed “fully guided” using CT-guided surgery: a 7-year retrospective study, Compend. Contin. Educ. Dent. 35, 590–600 (2014) [Google Scholar]
  89. H. Huang, M.-F. Hsieh, G. Zhang, H. Ouyang, C. Zeng, B. Yan et al., Improved accuracy of 3D-printed navigational template during complicated tibial plateau fracture surgery, Australas. Phys. Eng. Sci. Med. 38, 109–117 (2015) [CrossRef] [PubMed] [Google Scholar]
  90. R. Fürhauser, G. Mailath-Pokorny, R. Haas, D. Busenlechner, G. Watzek, B. Pommer, Esthetics of flapless single-tooth implants in the anterior maxilla using guided surgery: association of three-dimensional accuracy and pink esthetic score, Clin. Implant Dent. Relat. Res. 17, e427–e433 (2014) [CrossRef] [PubMed] [Google Scholar]
  91. G. Widmann, J.P.M. Berggren, B. Fischer, A.R. Pichler-Dennhardt, P. Schullian, R. Bale et al., Accuracy of image-fusion stereolithographic guides: mapping CT data with three-dimensional optical surface scannning, Clin. Implant Dent. Relat. Res. 17, e736–e744 (2015) [CrossRef] [PubMed] [Google Scholar]
  92. A. Reyes, I. Turkyilmaz, T.J. Prihoda, Accuracy of surgical guides made from conventional and a combination of digital scanning and rapid prototyping techniques, J. Prosthet. Dent. 113, 295–303 (2015) [CrossRef] [PubMed] [Google Scholar]
  93. M. Takemoto, S. Fujibayashi, E. Ota, B. Otsuki, H. Kimura, T. Sakamoto et al., Additive-manufactured patient-specific titanium templates for thoracic pedicle screw placement: novel design with reduced contact area, Eur. Spine J. 25, 1–8 (2015) [PubMed] [Google Scholar]
  94. D. Huang, M. Chen, D. He, C. Yang, J. Yuan, G. Bai et al., Preservation of the inferior alveolar neurovascular bundle in the osteotomy of benign lesions of the mandible using a digital template, Br. J. Oral Maxillofac. Surg. 53, 637–641 (2015) [CrossRef] [PubMed] [Google Scholar]
  95. Y. Li, Y. Jiang, B. Ye, J. Hu, Q. Chen, S. Zhu, Treatment of dentofacial deformities secondary to osteochondroma of the mandibular condyle using virtual surgical planning and 3-dimensional printed surgical templates, J. Oral Maxillofac. Surg. 74, 349–368 (2015) [CrossRef] [PubMed] [Google Scholar]
  96. S. Laycock, M. Hulse, C. Scrase, M. Tam, S. Isherwood, D. Mortimore et al., Towards the production of radiotherapy treatment shells on 3D printers using data derived from DICOM CT and MRI: preclinical feasibility studies, J. Radiother. Pract. 14, 92–98 (2015) [CrossRef] [Google Scholar]
  97. R. Singh, V.K. Srivastav, B. Baby, N. Damodaran, A. Suri, A novel electro-mechanical neuro-endoscopic box trainer, in International Conference on Industrial Instrumentation and Control (ICIC) (IEEE, Pune, 2015), pp. 917–921 [CrossRef] [Google Scholar]
  98. D. Leordean, S. Radu, D. Frăţilă, P. Berce, Studies on design of customized orthopedic endoprostheses of titanium alloy manufactured by SLM, Int. J. Adv. Manuf. Technol. 79, 1–16 (2015) [CrossRef] [Google Scholar]
  99. P. Liacouras, J. Garnes, N. Roman, A. Petrich, G.T. Grant, Designing and manufacturing an auricular prosthesis using computed tomography, 3-dimensional photographic imaging, and additive manufacturing: a clinical report, J. Prosthet. Dent. 105, 78–82 (2011) [CrossRef] [PubMed] [Google Scholar]
  100. R.K. Chen, Y.-A. Jin, J. Wensman, A. Shih, Additive manufacturing of custom orthoses and prostheses—a review, Addit. Manuf. 12, 77–89 (2016) [CrossRef] [Google Scholar]
  101. N. Otawa, T. Sumida, H. Kitagaki, K. Sasaki, S. Fujibayashi, M. Takemoto et al., Custom-made titanium devices as membranes for bone augmentation in implant treatment: modeling accuracy of titanium products constructed with selective laser melting, J. Craniomaxillofac. Surg. 43, 1289–1295 (2015) [CrossRef] [PubMed] [Google Scholar]
  102. ISO 2768-1, General Tolerances—Part 1: Tolerances for Linear and Angular Dimensions Without Individual Tolerance Indications (ISO, 1989) [Google Scholar]
  103. V. Mironov, N. Reis, B. Derby, Review: bioprinting: a beginning, Tissue Eng. 12, 631–634 (2006) [CrossRef] [PubMed] [Google Scholar]
  104. G.-H. Wu, S.-H. Hsu, Review: polymeric-based 3D printing for tissue engineering, J. Med. Biol. Eng. 35, 285–292 (2015) [CrossRef] [PubMed] [Google Scholar]
  105. X. Zhang, Y. Zhang, Tissue engineering applications of three-dimensional bioprinting, Cell Biochem. Biophys. 72, 772–782 (2015) [Google Scholar]
  106. N. Xu, X. Ye, D. Wei, J. Zhong, Y. Chen, G. Xu et al., 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair, ACS Appl. Mater. Interfaces 6, 14952–14963 (2014) [CrossRef] [Google Scholar]
  107. A.L. Jardini, M.A. Larosa, R. Maciel Filho, C.A. de Carvalho Zavaglia, L.F. Bernardes, C.S. Lambert et al., Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing, J. Craniomaxillofac. Surg. 42, 1877–1884 (2014) [CrossRef] [PubMed] [Google Scholar]
  108. H. Radovan, J. Ziak, T. Teodor, M. Jaroslav, L.K. Martin, Evaluation of custom-made implants using industrial computed tomography, in 10th International Conference on Digital Technologies (DT) (IEEE, Zilina, 2014), pp. 82–86 [Google Scholar]
  109. M. Cronskär, On Customization of Orthopedic Implants—From Design and Additive Manufacturing to Implementation, PhD Thesis, Mid Sweden University, Östersund, Sweden, 2014 [Google Scholar]
  110. X. Li, H. Cai, X. Cui, P. Cao, J. Zhang, G. Li et al., Prevention of late postpneumonectomy complications using a 3D printed lung in dog models, Eur. J. Cardiothorac. Surg. 46, e67–e73 (2014) [CrossRef] [PubMed] [Google Scholar]
  111. G. Rasperini, S. Pilipchuk, C. Flanagan, C. Park, G. Pagni, S. Hollister et al., 3D-printed bioresorbable scaffold for periodontal repair, J. Dent. Res. 94, 153S–157S (2015) [CrossRef] [PubMed] [Google Scholar]
  112. S.F.S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H.S.C. Metselaar, N.A. Kadri et al., A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing, Sci. Technol. Adv. Mater. 16, 033502 (2015) [CrossRef] [PubMed] [Google Scholar]
  113. E. Farré-Guasch, J. Wolff, M.N. Helder, E.A.J.M. Schulten, T. Forouzanfar, J. Klein-Nulend, Application of additive manufacturing in oral and maxillofacial surgery, J. Oral Maxillofac. Surg. 73, 2408–2418 (2015) [CrossRef] [PubMed] [Google Scholar]
  114. S. van Uden, J. Silva-Correia, V. Correlo, J. Oliveira, R. Reis, Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement, Biofabrication 7, 015008 (2015) [CrossRef] [PubMed] [Google Scholar]
  115. A. Maru, Evaluating the Use of 3D Imaging in Creating a Canal-Directed Endodontic Access, Master's Thesis, Indiana University, Indianapolis, IN, USA, 2015 [Google Scholar]
  116. Y. Li, W. Yang, X. Li, X. Zhang, C. Wang, X. Meng et al., Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating, ACS Appl. Mater. Interfaces 7, 5715–5724 (2015) [CrossRef] [Google Scholar]
  117. W. Mroz, B. Budner, R. Syroka, K. Niedzielski, G. Golański, A. Slósarczyk et al., In vivo implantation of porous titanium alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion, J. Biomed. Mater. Res. B: Appl. Biomater. 103, 151–158 (2015) [CrossRef] [Google Scholar]
  118. H.R. Cho, T.S. Roh, K.W. Shim, Y.O. Kim, D.H. Lew, I.S. Yun, Skull reconstruction with custom made three-dimensional titanium implant, Arch. Craniofac. Surg. 16, 11–16 (2015) [CrossRef] [Google Scholar]
  119. M. Haefeli, D. Schaefer, R. Schumacher, M. Müller-Gerbl, P. Honigmann, Titanium template for scaphoid reconstruction, J. Hand Surg. Eur. 40, 526–533 (2014) [CrossRef] [Google Scholar]
  120. E. Vorndran, C. Moseke, U. Gbureck, 3D printing of ceramic implants, MRS Bull. 40, 127–136 (2015) [Google Scholar]
  121. C. Lueders, B. Jastram, R. Hetzer, H. Schwandt, Rapid manufacturing techniques for the tissue engineering of human heart valves, Eur. J. Cardiothorac. Surg. 46, 593–601 (2014) [CrossRef] [PubMed] [Google Scholar]
  122. X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong et al., Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review, Biomaterials 83, 127–141 (2016) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.