Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 8, 2017
Article Number 5
Number of page(s) 6
DOI https://doi.org/10.1051/ijmqe/2017003
Published online 20 February 2017
  1. A. Chortos, Z. Bao, Skin-inspired electronic devices, Mater. Today 17, 321 (2014) [CrossRef]
  2. G. Sun, X. Wang, P. Chen, Microfiber devices based on carbon materials, Mater. Today 18, 215 (2015) [CrossRef]
  3. D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Epidermal electronics, Science 333, 838 (2011) [CrossRef] [PubMed]
  4. H. Park, Y.R. Jeong, J. Yun, S.Y. Hong, S. Jin, S. Lee, G. Zi, J.S. Ha, Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars, ACS Nano 9, 9974 (2015) [CrossRef] [PubMed]
  5. M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review, Adv. Funct. Mater. 26, 1678 (2016) [CrossRef]
  6. N. Luo, W. Dai, C. Li, Z. Zhou, L. Lu, C.C.Y. Poon, S.-C. Chen, Y. Zhang, N. Zhao, Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement, Adv. Funct. Mater. 26, 1178 (2016) [CrossRef]
  7. K.-Y. Shin, J.S. Lee, J. Jang, Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring, Nano Energy 22, 95 (2016) [CrossRef]
  8. S. Chun, Y. Kim, H. Oh, G. Bae, W. Park, A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing, Nanoscale 7, 11652 (2015) [CrossRef]
  9. A. Bianco, H.-M. Cheng, T. Enoki, Y. Gogotsi, R.H. Hurt, N. Koratkar, T. Kyotani, M. Monthioux, C.R. Park, J.M.D. Tascon, J. Zhang, All in the graphene family − a recommended nomenclature for two-dimensional carbon materials, Carbon 65, 1 (2013) [CrossRef]
  10. A.V. Alaferdov, A. Gholamipour-Shirazi, M.A. Canesqui, Y.A. Danilov, S.A. Moshkalev, Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite, Carbon 69, 525 (2014) [CrossRef]
  11. A.V. Alaferdov, S.M. Balashov, M.A. Canesqui, S. Parada, Y.A. Danilov, S.A. Moshkalev, Formation of thin, flexible, conducting films composed of multilayer graphene, Bull. Russ. Acad. Sci.: Phys. 78, 1357 (2014) [CrossRef]
  12. X. Li, R. Zhang, W. Yu, K. Wang, J. Wei, D. Wu, A. Cao, Z. Li, Y. Cheng, Q. Zheng, R.S. Ruoff, H. Zhu, Stretchable and highly sensitive graphene-on-polymer strain sensors, Sci. Rep. 2, 870 (2012) [PubMed]
  13. Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, K. Wang, D. Wu, H. Zhu, Wearable and highly sensitive graphene strain sensors for human motion monitoring, Adv. Funct. Mater. 24, 4666 (2014) [CrossRef]
  14. L. Gao, D. Dong, J. He, K. Qiao, F. Cao, M. Li, H. Liu, Y. Cheng, J. Tang, H. Song, Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film, Appl. Phys. Lett. 105, 153702 (2014) [CrossRef]
  15. S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. Cheng, A wearable and highly sensitive pressure sensor with ultrathin gold nanowires, Nat. Commun. 5, 3132 (2014)
  16. P. Zhao, N. Deng, X. Li, C. Ren, Z. Wang, Development of highly-sensitive and ultra-thin silicon stress sensor chips for wearable biomedical applications, Sens. Actuators A: Phys. 216, 158 (2014) [CrossRef]
  17. C. Pang, G.-Y. Lee, T. Kim, S.M. Kim, H.N. Kim, S.-H. Ahn, K.-Y. Suh, A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres, Nat. Mater. 11, 795 (2012) [CrossRef]
  18. Y. Tajitsu, Piezoelectret sensor made from an electro-spun fluoropolymer and its use in a wristband for detecting heart-beat signals, IEEE Trans. Dielectr. Electr. Insul. 22, 1355 (2015) [CrossRef]
  19. S.W. Kim, S.B. Choi, Y. An, B. Kim, D.W. Kim, J.-G. Yook, Heart rate detection during sleep using a flexible RF resonator and injection-locked PLL sensor, IEEE Trans. Biomed. Eng. 62, 2568 (2015) [CrossRef]
  20. J.-W. Tsai, J.-J. Wang, Y.-C. Su, Piezoelectric rubber films for autonomous physiological monitoring systems, Sens. Actuators A: Phys. 215, 176 (2014) [CrossRef]
  21. S. Choi, Z. Jiang, A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals, Sens. Actuators A: Phys. 128, 317 (2006) [CrossRef]
  22. Nacional de Grafite Ltda, Itapecerica, MG, Brazil, http://www.grafite.com/inicio_en.asp
  23. A.V. Alaferdov, R. Savu, T.A. Rackauskas, S. Rackauskas, M.A. Canesqui, D.S. De Lara, G.O. Setti, E. Joanni, G.M. De Trindade, U.B. Lima, A.S. De Souza, S.A. Moshkalev, Wearable, highly stable strain and bending sensor based on high aspect ratio graphite nanobelts, Nanotechnology 27, 375501 (2016) [CrossRef] [PubMed]
  24. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys.: PCCP 9, 1276 (2007) [CrossRef]
  25. A.R. Ubbelohde, F.A. Lewis, Graphite and its crystal compounds (Oxford at The Clarendon Press, London, 1960)
  26. X. Zhang, Q.Z. Xue, D.D. Zhu, Positive and negative linear magnetoresistance of graphite, Phys. Lett. A 320, 471 (2004) [CrossRef]
  27. A. Ballestar, P. Esquinazi, J. Barzola-Quiquia, S. Dusari, F. Bern, R.R. Da Silva, Y. Kopelevich, Possible superconductivity in multi-layer-graphene by application of a gate voltage, Carbon 72, 312 (2014) [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.