Open Access
Int. J. Metrol. Qual. Eng.
Volume 8, 2017
Article Number 5
Number of page(s) 6
Published online 20 February 2017
  1. A. Chortos, Z. Bao, Skin-inspired electronic devices, Mater. Today 17, 321 (2014) [CrossRef] [Google Scholar]
  2. G. Sun, X. Wang, P. Chen, Microfiber devices based on carbon materials, Mater. Today 18, 215 (2015) [CrossRef] [Google Scholar]
  3. D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Epidermal electronics, Science 333, 838 (2011) [CrossRef] [PubMed] [Google Scholar]
  4. H. Park, Y.R. Jeong, J. Yun, S.Y. Hong, S. Jin, S. Lee, G. Zi, J.S. Ha, Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars, ACS Nano 9, 9974 (2015) [CrossRef] [PubMed] [Google Scholar]
  5. M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review, Adv. Funct. Mater. 26, 1678 (2016) [CrossRef] [Google Scholar]
  6. N. Luo, W. Dai, C. Li, Z. Zhou, L. Lu, C.C.Y. Poon, S.-C. Chen, Y. Zhang, N. Zhao, Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement, Adv. Funct. Mater. 26, 1178 (2016) [CrossRef] [Google Scholar]
  7. K.-Y. Shin, J.S. Lee, J. Jang, Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring, Nano Energy 22, 95 (2016) [CrossRef] [Google Scholar]
  8. S. Chun, Y. Kim, H. Oh, G. Bae, W. Park, A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing, Nanoscale 7, 11652 (2015) [CrossRef] [PubMed] [Google Scholar]
  9. A. Bianco, H.-M. Cheng, T. Enoki, Y. Gogotsi, R.H. Hurt, N. Koratkar, T. Kyotani, M. Monthioux, C.R. Park, J.M.D. Tascon, J. Zhang, All in the graphene family − a recommended nomenclature for two-dimensional carbon materials, Carbon 65, 1 (2013) [CrossRef] [Google Scholar]
  10. A.V. Alaferdov, A. Gholamipour-Shirazi, M.A. Canesqui, Y.A. Danilov, S.A. Moshkalev, Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite, Carbon 69, 525 (2014) [CrossRef] [Google Scholar]
  11. A.V. Alaferdov, S.M. Balashov, M.A. Canesqui, S. Parada, Y.A. Danilov, S.A. Moshkalev, Formation of thin, flexible, conducting films composed of multilayer graphene, Bull. Russ. Acad. Sci.: Phys. 78, 1357 (2014) [CrossRef] [Google Scholar]
  12. X. Li, R. Zhang, W. Yu, K. Wang, J. Wei, D. Wu, A. Cao, Z. Li, Y. Cheng, Q. Zheng, R.S. Ruoff, H. Zhu, Stretchable and highly sensitive graphene-on-polymer strain sensors, Sci. Rep. 2, 870 (2012) [PubMed] [Google Scholar]
  13. Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, K. Wang, D. Wu, H. Zhu, Wearable and highly sensitive graphene strain sensors for human motion monitoring, Adv. Funct. Mater. 24, 4666 (2014) [CrossRef] [Google Scholar]
  14. L. Gao, D. Dong, J. He, K. Qiao, F. Cao, M. Li, H. Liu, Y. Cheng, J. Tang, H. Song, Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film, Appl. Phys. Lett. 105, 153702 (2014) [CrossRef] [Google Scholar]
  15. S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. Cheng, A wearable and highly sensitive pressure sensor with ultrathin gold nanowires, Nat. Commun. 5, 3132 (2014) [PubMed] [Google Scholar]
  16. P. Zhao, N. Deng, X. Li, C. Ren, Z. Wang, Development of highly-sensitive and ultra-thin silicon stress sensor chips for wearable biomedical applications, Sens. Actuators A: Phys. 216, 158 (2014) [CrossRef] [Google Scholar]
  17. C. Pang, G.-Y. Lee, T. Kim, S.M. Kim, H.N. Kim, S.-H. Ahn, K.-Y. Suh, A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres, Nat. Mater. 11, 795 (2012) [CrossRef] [PubMed] [Google Scholar]
  18. Y. Tajitsu, Piezoelectret sensor made from an electro-spun fluoropolymer and its use in a wristband for detecting heart-beat signals, IEEE Trans. Dielectr. Electr. Insul. 22, 1355 (2015) [CrossRef] [Google Scholar]
  19. S.W. Kim, S.B. Choi, Y. An, B. Kim, D.W. Kim, J.-G. Yook, Heart rate detection during sleep using a flexible RF resonator and injection-locked PLL sensor, IEEE Trans. Biomed. Eng. 62, 2568 (2015) [CrossRef] [PubMed] [Google Scholar]
  20. J.-W. Tsai, J.-J. Wang, Y.-C. Su, Piezoelectric rubber films for autonomous physiological monitoring systems, Sens. Actuators A: Phys. 215, 176 (2014) [CrossRef] [Google Scholar]
  21. S. Choi, Z. Jiang, A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals, Sens. Actuators A: Phys. 128, 317 (2006) [CrossRef] [Google Scholar]
  22. Nacional de Grafite Ltda, Itapecerica, MG, Brazil, [Google Scholar]
  23. A.V. Alaferdov, R. Savu, T.A. Rackauskas, S. Rackauskas, M.A. Canesqui, D.S. De Lara, G.O. Setti, E. Joanni, G.M. De Trindade, U.B. Lima, A.S. De Souza, S.A. Moshkalev, Wearable, highly stable strain and bending sensor based on high aspect ratio graphite nanobelts, Nanotechnology 27, 375501 (2016) [CrossRef] [PubMed] [Google Scholar]
  24. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys.: PCCP 9, 1276 (2007) [CrossRef] [PubMed] [Google Scholar]
  25. A.R. Ubbelohde, F.A. Lewis, Graphite and its crystal compounds (Oxford at The Clarendon Press, London, 1960) [Google Scholar]
  26. X. Zhang, Q.Z. Xue, D.D. Zhu, Positive and negative linear magnetoresistance of graphite, Phys. Lett. A 320, 471 (2004) [CrossRef] [Google Scholar]
  27. A. Ballestar, P. Esquinazi, J. Barzola-Quiquia, S. Dusari, F. Bern, R.R. Da Silva, Y. Kopelevich, Possible superconductivity in multi-layer-graphene by application of a gate voltage, Carbon 72, 312 (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.