Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 6, Number 1, 2015
Article Number 102
Number of page(s) 6
DOI https://doi.org/10.1051/ijmqe/2015002
Published online 23 February 2015
  1. P. Bourdet, Contribution à la mesure tridimensionnelle : Modèle d’identification géométrique ; correction des machines à mesurer ; métrologie fonctionnelle des pièces mécaniques, Ph.D. thesis, University of Nancy 1, France (1988) [Google Scholar]
  2. L. Mathieu, A. Castang, Contrôle des spécifications par zone de tolérance (ISO 1101): Quantification des erreurs causées par les méthodes de traitement des points mesurés, Proceedings of international congress of metrology 1995, Nimes, France [Google Scholar]
  3. K. Carr, P. Ferreira, Verification of form tolerances. Part I: Basic issues, flatness and straightness, Precis. Eng. 17, 131–143 (1995) [CrossRef] [Google Scholar]
  4. T. Kanada, S. Suzuki, Evaluation of minimum zone flatness by means of nonlinear optimization techniques and its verification, Precis. Eng. 15, 93–99 (1993) [CrossRef] [Google Scholar]
  5. R. Raghunandan, P. Venkateswara Rao, Selection of sampling points for accurate evaluation of flatness error using coordinate measuring machine, J. Mater. Process. Technol. 202, 240–245 (2008) [CrossRef] [Google Scholar]
  6. R. Raghunandan, P. Venkateswara Rao, Selection of an optimum sample size for flatness error estimation while using coordinate measuring machine, Int. J Machine Tools Manufact. 47, 477–482 (2007) [CrossRef] [Google Scholar]
  7. Jyunping Huang, An efficient approach for solving the straightness and the flatness problems at large number of data points, Computer-Aided Design 35, 15–25 (2003) [CrossRef] [Google Scholar]
  8. B. Gapinski, M. Grzelka, M. Rucki, The accuracy analysis of the roundness measurement with coordinate measuring machines, XVIII IMEKO world congress, September 2006, Rio de Janeiro, Brazil [Google Scholar]
  9. G.L. Samuel, M.S. Shunmugam, Evaluation of straightness and flatness error using computational geometric techniques, Computer-Aided Design 31, 829–843 (1999) [CrossRef] [Google Scholar]
  10. ISO/IEC Guide 98-3:2008, Uncertainty of measurement – Part 3: Guide to the expression of uncertainty in measurement (GUM, 1995) [Google Scholar]
  11. Norme ISO 1101:2004, Geometrical product specifications (GPS)- Geometrical tolerancing − Tolerances of form, orientation, location and run-out, 2004 [Google Scholar]
  12. A. Jalid, S. Hariri, J.P. Senelaer, A. El gharad, Un algorithme pour l’estimation des paramètres de courbes (ou surfaces) et leurs incertitudes en mesure 3D, Proceedings of international conference on Integrated design and production (CPI’2007), 22-24 octobre, 2007, Rabat, Maroc [Google Scholar]
  13. K. Levenberg, A method for the solution of certain problems in least squares, Quart. Appl. Math. 2, 164–168 (1944) [Google Scholar]
  14. D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math. 11, 431–441 (1963) [CrossRef] [MathSciNet] [Google Scholar]
  15. J. Nocedal, S.J. Wright, Numerical Optimization, Springer, New York (1999) [Google Scholar]
  16. P.T. Boggs, H. Byrd Richard, E.R. Janet, R.B. Schnabel, Users reference guide for ODRPACK version 2.01, Software for weightes orthogonal distance regression (1992) [Google Scholar]
  17. P.T. Boggs, R.H. Byrd, B. Schnabel Robert, A stable and efficient algorithm for nonlinear orthogonal distance regression, SIAM J. Sci. Statist. Comput. 1052–1078 (1987) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.