Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 4, Number 1, 2013
Page(s) 47 - 54
DOI https://doi.org/10.1051/ijmqe/2012037
Published online 05 June 2013
  1. W. Li, R.C. Feng, Highly Accelerated Life Test for the Reliability Assessment of the Lead-Free SMT Mainboard, Int. Microsystems Pack, Assembly Conf. (2006), pp. 1–4 [Google Scholar]
  2. V. Venkatadri, Y. Liang, X. Yan, E. Cotts, K. Srihari, P. Borgesen, Accelerating the effects of aging on the reliability of lead free solder joints in a quantitative fashion, Electronic Comp. Technol. Conf. (2009), pp. 398–405 [Google Scholar]
  3. F.X. Che, H.L.J. Pang, F.L. Wong, G.H. Lim, T.H. Low, Vibration fatigue test and analysis for flip chip solder joints, Electronics Pack. Technol. Conf. (2003), pp. 107–113 [Google Scholar]
  4. T. Eckert, W.H. Muller, N.F. Nissen, H. Reichl, A Solder Joint Fatigue Life Model for Combined Vibration and Temperature Environments, Electronic Comp. Technol. Conf. (2009), pp. 522–528 [Google Scholar]
  5. H. Qi, M. Osterman, M. Pecht, Modeling of Combined Temperature Cycling and Vibration Loading on PBGA Solder Joints Using an Incremental Damage Superposition Approach, IEEE Trans. Adv. Pack. 31, 463–472 (2008) [CrossRef] [Google Scholar]
  6. Y. Li, C.P. Wong, Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications, Mater. Sci. Eng. 51, 1–35 (2006) [CrossRef] [Google Scholar]
  7. R.V. Leon, R. Ramachandran, A.J. Ashby, J. Thyagarajan, Bayesian modelling of accelerated life tests with random effects, J. Qual. Technol. 39, 1–14 (2006) [Google Scholar]
  8. L.J. Freeman, G.G. Vining, Reliability data analysis for life tests experiments with subsampling, J. Qual. Technol. 42, 233–241 (2010) [Google Scholar]
  9. W.B. Nelson, Accelerated Testing: Statistical Models, Test Plans, and Data Analysis (Wiley-Interscience Paperback Series, NJ, 2004) [Google Scholar]
  10. M. Catelani, V.L. Scarano, F. Bertocci, Implementation and Characterization of a Medical Ultrasound Phased Array Probe with New Pb-free Soldering Materials, IEEE Trans. Instrum. Meas. 59, 2522–2529 (2010) [CrossRef] [Google Scholar]
  11. M. Catelani, V.L. Scarano, F. Bertocci, Experimental Stress Characterization of a Biomedical Ultrasound Probe Soldered With Innovative Silver Isotropically Conductive Adhesive, IEEE Trans. Instrum. Meas. 61, 719–728 (2012) [CrossRef] [Google Scholar]
  12. Y. Tao, Y. Xia, H. Wang, F. Gong, H. Wu, G. Tao, Novel isotropical conductive adhesives for electronic packaging application, IEEE Trans. Adv. Pack. 32, 589–592 (2009) [CrossRef] [Google Scholar]
  13. D. Shangguan, Lead-Free Solder Interconnect Reliability (ASM international, Materials Park, Ohio, 2005) [Google Scholar]
  14. I. Mir, D. Kumar, Recent advances in isotropic conductive adhesives for electronics packaging applications, Int. J. Adhes. Adhes. 28, 362–371 (2008) [CrossRef] [Google Scholar]
  15. D. Klosterman, L. Li, J.E. Morris, Materials Characterization, Conduction Development, and Curing Effects on Reliability of Isotropically Conductive Adhesives, IEEE Trans. Comp. Pack. Manufact. Technol., Part A 21, 23–31 (1998) [Google Scholar]
  16. D.D. Chang, P.A. Crawford, J.A. Fulton, R. McBride, M.B. Schmidt, R.E. Sinitski, C.P. Wong, An Overview and Evaluation of Anisotropically Conductive Adhesive Films for Fine Pitch Electronic Assembly, IEEE Trans. Comp. Hybr. Manuf. Technol. 16, 828–835 (1993) [CrossRef] [Google Scholar]
  17. M. Catelani, V.L. Scarano, F. Bertocci, R. Berni, Optimization of the soldering process with ECAs in electronic equipment: characterization measurement and experimental design, IEEE Trans. Comp. Pack. Manuf. Technol. 1, 1616–1626 (2011) [CrossRef] [Google Scholar]
  18. L. Li, J.E. Morris, J. Liu, Z. Lai, L. Ljungkrona, C. Li, Reliability and failure mechanism of isotropically conductive adhesives joints, Electronic Comp. Technol. Conf. (1995), pp. 114–120 [Google Scholar]
  19. Q.K. Tong, D.L. Markley, G. Frederickson, R. Kuder, D. Lu, Conductive Adhesives with Stable Contact Resistance and Superior Impact Performance, Electronic Comp. Technol. Conf. (1999), pp. 347–352 [Google Scholar]
  20. W.G. Cochran, G.M. Cox, Experimental Designs, 2nd edn. (John Wiley, New York, 1957) [Google Scholar]
  21. R.H. Myers, A.I. Khuri, G.G. Vining, Response Surface alternatives to the Taguchi robust parameter design approach, Am. Stat. 46, 131–139 (1992) [Google Scholar]
  22. G.G. Vining, R.H. Myers, Combining Taguchi and response surface philosophies: a dual response approach, J. Qual. Technol. 22, 38–45 (1990) [Google Scholar]
  23. J.A. Nelder, Y. Lee, Generalized Linear Models for the analysis of Taguchi-type experiments, Appl. Stoch. Model D. A. 7, 107–120 (1991) [CrossRef] [Google Scholar]
  24. Y. Lee, J.A. Nelder, Robust design via Generalized Linear Models, J. Qual. Technol. 35, 2–12 (2003) [Google Scholar]
  25. A.H. Dror, D.M. Steinberg, Robust design for Generalized Linear Models, Technometrics 48, 520–529 (2006) [CrossRef] [Google Scholar]
  26. L.W. Condra, Reliability Improvement With Design of Experiments, Quality and Reliability, 2nd edn. (Marcel Dekker, Inc., New York, 2001) [Google Scholar]
  27. P. Sharma, A. Dasgupta, Micro-mechanics of creep-fatigue damage in PB-SN solder due to thermal cycling – Part II: mechanistic insights and cyclic durability predictions from monotonic data, ASME Trans. J. Electron. 124, 298–304 (2002) [CrossRef] [Google Scholar]
  28. J.F. Lawless, Statistical Models and Methods for Lifetime Data (John Wiley & Sons, Hoboken, NJ, 2003) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.