Open Access
Int. J. Metrol. Qual. Eng.
Volume 3, Number 3, 2012
Page(s) 137 - 143
Published online 13 May 2013
  1. R.E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME D, J. Basic Eng. 82, 35–45 (1960) [Google Scholar]
  2. H.W. Sorenson, Least-squares estimation: from Gauss to Kalman, IEEE Spectrum 7, 63–68 (1970) [CrossRef] [Google Scholar]
  3. C. Mitsantisuk, S. Katsura, K. Ohishi, Kalman-filter-based sensor integration of variable power assist control based on human stiffness estimation, IEEE Trans. Ind. Electron. 56, 3897–3905 (2009) [CrossRef] [Google Scholar]
  4. N. Salvatore, A. Caponio, F. Neri, S. Stasi, G.L. Cascella, Optimization of delayed-state Kalman-filter-based algorithm via differential evolution for sensorless control of induction motors, IEEE Trans. Ind. Electron. 57, 385–394 (2010) [CrossRef] [Google Scholar]
  5. W.L. Chan, C.S. Lee, F.B. Hsiao, Real-time approaches to the estimation of local wind velocity for a fixed-wing unmanned air vehicle, Meas. Sci. Technol. 22, 105203 (2011) [CrossRef] [Google Scholar]
  6. G.E. D’Errico À la Kalman filtering for metrology tool with application to coordinate measuring machines, IEEE Trans. Ind. Electron. 59, 4377–4382 (2012) [CrossRef] [Google Scholar]
  7. G.E. D’Errico N. Murru, An algorithm for concurrent estimation of time-variant quantities, Meas. Sci. Technol. 23, 045008 (2012) [CrossRef] [Google Scholar]
  8. R.K. Mehra On the identification of variances and adaptive Kalman filtering, IEEE Trans. Autom. Control AC–15, 175–184 (1970) [Google Scholar]
  9. K.A. Myers, B.D. Tapley, Adaptive sequential estimation with unknown noise statistics, IEEE Trans. Autom. Control 21, 520–523 (1976) [CrossRef] [Google Scholar]
  10. B.J. Odelson, M.R. Rajamani, J.B. Rawlings, A new autocovariance least-squares method for estimating noise covariances, Automatica 42, 303–308 (2006) [CrossRef] [MathSciNet] [Google Scholar]
  11. G.E. D’Errico Paradigms for uncertainty treatments: a comparative analysis with application to measurement, Measurement 42, 494–500 (2009) [CrossRef] [Google Scholar]
  12. Z.M. Durovic, B.D. Kovacevic, Robust estimation with unknown noise statistics, IEEE Trans. Autom. Control 44, 1292–1296 (1999) [CrossRef] [Google Scholar]
  13. G.E. D’Errico, N. Murru, Fuzzy treatment of candidate outliers in measurements, Advances in Fuzzy Systems 2012, Article ID 783843 (2012) [Google Scholar]
  14. R.B. Nelsen, An introduction to Copulas, 2nd edn. (Springer, New York, 2007) [Google Scholar]
  15. BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, and OIML, Evaluation of measurement data-Guide to the expression of uncertainty in measurement (GUM 1995 with minor corrections), JCGM 100 (2008) [Google Scholar]
  16. BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, and OIML, Evaluation of measurement data–Supplement 1 to the “Guide to the expression of uncertainty in measurement”–Propagation of distributions using a Monte Carlo method, JCGM 101 (2008) [Google Scholar]
  17. ASTM E178-08, Standard practice for dealing with outlying observations, American Society for Testing and Materials (2008) [Google Scholar]
  18. G.E. D’Errico, Testing for outliers based on Bayes rule, in Proc. XIX IMEKO World Congress on Fundamental and Applied Metrology, Lisbon, Portugal, 2009 [Google Scholar]
  19. L.A. Zadeh, Fuzzy sets, Inf. Control 8, 338–353 (1965) [Google Scholar]
  20. E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man-Machine Studies 7, 1–13 (1975) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.