Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 3, Number 2, 2012
Page(s) 117 - 123
DOI https://doi.org/10.1051/ijmqe/2012010
Published online 14 November 2012
  1. R. Carroll, D. Ruppert, L. Stefanski, C. Crainiceanu, Measurement Error in Nonlinear Models (Chapman & Hall, 2006) [Google Scholar]
  2. W. Deming, Statistical Adjustment of Data (Wiley, 1943) [Google Scholar]
  3. W. Fuller, Measurement Error Models (Wiley, 1987) [Google Scholar]
  4. B. Reed, A spreadsheet for linear least-squares fitting with errors in both coordinates, Phys. Educ. 45, 93–95 (2010) [CrossRef] [Google Scholar]
  5. B. Reed, Linear least-squares fits with errors in both coordinates. II : Comments on parameter variances, Am. J. Phys. 60, 59–62 (1992) [NASA ADS] [CrossRef] [Google Scholar]
  6. D. York, N. Evensen, M. Martinez, J. Delgado, Unified equations for the slope, intercept, and standard errors of the best straight line, Am. J. Phys. 72, 367–375 (2004) [NASA ADS] [CrossRef] [Google Scholar]
  7. C. Wang, H. Iyer, Fiducial approach for assessing agreement between two instruments, Metrologia 45, 415–421 (2008) [CrossRef] [Google Scholar]
  8. M. Brown, Robust line estimation with errors in both variables, J. Am. Stat. Assoc. 77, 71–79 (1982) [CrossRef] [Google Scholar]
  9. A. Madansky, The fitting of straight lines when both variables are subject to errors, J. Am. Stat. Assoc. 54, 173–205 (1959) [CrossRef] [Google Scholar]
  10. W. Press, S. Teukolsky, W. Vettterling, B. Flannery, Numerical Recipes, The Art of Scientific Computing, 3rd edn. (Cambridge University Press, 2007) [Google Scholar]
  11. J. Toivanen, J. Dobaczewski, M., Kortelainen, K. Mizuyama, Error analysis of nuclear mass fits, Phys. Rev. C 78, 0343061–0343068 (2008) [CrossRef] [Google Scholar]
  12. R Development Core Team 2004 R : A Language and Environment for Statistical Computing [Google Scholar]
  13. T. Burr, P. Knepper, A study of the effect of measurement error in predictor variables in nondestructive assay, Appl. Radiat. Isotopes 53, 547–555 (2000) [CrossRef] [Google Scholar]
  14. C. Elster, B. Toman, Bayesian uncertainty analysis for a regression model versus application of GUM supplement 1 to the least-squares estimate, Metrologia 48, 233–240 (2011) [CrossRef] [Google Scholar]
  15. W. Gilks, S. Richardson, D. Spiegelhalter, Markov Chain Monte Carlo in Practice (Chapman & Hall/CRC, 1996) [Google Scholar]
  16. P. Dellaportas, D. Stephens, Bayesian analysis of errors-in-variables regression models, Biometrics 51, 1085–1095 (1995) [CrossRef] [Google Scholar]
  17. S. Kulathinal, K. Kuulasmaa, D. Gasbarra, Estimation of an errors-in-variables regression model with the variance of the measurement errors vary between the observations, Stat. Med. 21, 1089–1101 (2002) [CrossRef] [PubMed] [Google Scholar]
  18. M. DeGroot, Probability and Statistics, 2nd edn. (Addison-Wesley, 1986) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.