Open Access
Int. J. Metrol. Qual. Eng.
Volume 3, Number 1, 2012
Page(s) 7 - 13
Published online 26 September 2012
  1. L. Essen, D.S. Sutcliffen, Improvement to the national physical laboratory atomic clock, Nature 223, 602–603 (1969) [CrossRef] [Google Scholar]
  2. H.S. Margolis, G.P. Barwood, G. Huang, H.A. Klein, S.N. Lea, K. Szymaniec, P. Gill, Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion, Science 306, 1355 (2004) [CrossRef] [PubMed] [Google Scholar]
  3. G.P. Barwood, H.S. Margolis, G. Huang, P. Gill, H.A. Klein, Measurement of the electric quadrupole moment of the 4d2D5/2 level in 88Sr+, Phys. Rev. Lett. 93, 133001 (2004) [CrossRef] [PubMed] [Google Scholar]
  4. T. Schneider, E. Peik, C. Tamm, Sub-Hertz optical frequency comparisons between two trapped 171Yb+ ions, Phys. Rev. Lett. 94, 230801 (2005) [CrossRef] [PubMed] [Google Scholar]
  5. W.H. Oskay, W.M. Itano, J.C. Bergquist, Measurement of the 199Hg+ 5d9 6s2 2D5/2 electric quadrupole moment and a constraint on the quadrupole shift, Phys. Rev. Lett. 94, 163001 (2005) [CrossRef] [PubMed] [Google Scholar]
  6. P. Dube, A.A. Madej, J.E. Bernard, L. Marmet, J.-S. Boulanger, S. Cundy, Electric quadrupole shift cancellation in single-ion optical frequency standards, Phys. Rev. Lett. 95, 033001 (2005) [CrossRef] [PubMed] [Google Scholar]
  7. W.H. Oskay, S.A. Diddams, E.A. Donley, T.M. Fortier, Single-atom optical clock with high accuracy, Phys. Rev. Lett. 97, 020801 (2006) [Google Scholar]
  8. T. Badr, M.D. Plimmer, P. Juncar, M.E. Himbert, Y. Louyer, D.J.E. Knight, Observation by two-photon laser spectroscopy of the 4d105s 2S1/2 → 4d95s2 2D5/2 clock transition in atomic silver, Phys. Rev. A 74, 062509 (2006) [CrossRef] [Google Scholar]
  9. G. Uhlenberg, J. Dirscherl, H. Walther, Magneto-optical trapping of silver atoms, Phys. Rev. A 62, 063404 (2000) [CrossRef] [Google Scholar]
  10. P.L. Bender, J.L. Hall, R.H. Garstang, F.M.J. Pichanik, W.W. Smith, R.L. Barger, J.B. West, Candidates for two-photon optical frequency standards, Bull. Am. Phys. Soc. 21, 599 (1976) [Google Scholar]
  11. S. Topcu, J. Nasser, L.M.L. Daku, S. Fritzsche, Ab initio calculations of external-field shifts of the 661-nm quadrupolar clock transition in neutral Ag atoms, Phys. Rev. A 73, 42503 (2006) [CrossRef] [Google Scholar]
  12. W.M. Itano, J.C. Bergquist, R.G. Hulet, D.J. Wineland, Radiative decay rates in Hg+ from observations of quantum jumps in a single ion, Phys. Rev. Lett. 59, 2732 (1987) [CrossRef] [PubMed] [Google Scholar]
  13. S. Gozzini, G. Nienhuis, E. Mariotti, G. Paffuti, C. Gabbanini, L. Moi, Wall effects on light induced drift, Opt. Commun. 88, 341 (1992) [CrossRef] [Google Scholar]
  14. M. Meucci, E. Mariotti, P. Bicchi, C. Marinelli, L. Moi, Light-induced atom desorption, Europhys. Lett. 25, 639 (1994) [Google Scholar]
  15. E. Mariotti, S. Atutov, M. Meucci, P. Bicchi, C. Marinelli, L. Moi, Dynamics of rubidium light-induced atom desorption (LIAD), Chem. Phys. 187, 111 (1994) [CrossRef] [Google Scholar]
  16. S.N. Atutov, V. Biancalana, P. Bicchi, C. Marinelli, E. Mariotti, M. Meucci, A. Nagel, K. Nasyrov, S. Rachini, L. Moi, Light induced diffusion and desorption of alkali metals in a siloxane film : theory and experiment, Phys. Rev. A 60, 4693 (1999) [CrossRef] [Google Scholar]
  17. C. Marinelli, K.A. Nasyrov, S. Bocci, B. Pieragnoli, A. Burchianti, V. Biancalana, E. Mariotti, S.N. Atutov, L. Moi, A new class of photo-induced phenomena in siloxane films, Eur. Phys. J. D 13, 231 (2001) [CrossRef] [EDP Sciences] [Google Scholar]
  18. S. Gozzini, A. Lucchesini, Light-induced potassium desorption from polydimethylsiloxane film, Eur. Phys. J. D 28, 157 (2004) [CrossRef] [EDP Sciences] [Google Scholar]
  19. E.B. Alexandrov, M.V. Balabas, D. Budker, D. English, D.F. Kimball, C.-H. Li, V.V. Yashchuk, Light-induced desorption of alkali-metal atoms from paraffin coating, Phys. Rev. A 66, 042903 (2002) [CrossRef] [Google Scholar]
  20. B.P. Anderson, M.A. Kasevich, Loading a vapor-cell magneto-optic trap using light-induced atom desorption, Phys. Rev. A 63, 023404 (2001) [CrossRef] [Google Scholar]
  21. S.N. Atutov, R. Calabrese, B. Guidiai, A.G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, S. Veronesi, Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption, Phys. Rev. A 67, 053401 (2003) [CrossRef] [Google Scholar]
  22. A. Burchianti, A. Bogi, C. Marinelli, E. Mariotti, L. Moi, Light-induced atomic desorption and related phenomena, Phys. Scr. T 135, 014012 (2009) [CrossRef] [Google Scholar]
  23. J.-P. Loisel, Réalisation de sources laser à l’état solide et observation du phénomène LIAD : application au développement d’une horloge optique à atomes neutres d’argent, Doctoral thesis, University of Versailles, 2010 [Google Scholar]
  24. Y. Louyer, F. Balembois, M.D. Plimmer, T. Badr, P. Georges, P. Juncar, M.E. Himbert, Efficient cw operation of diode-pumped Nd :YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock, Opt. Commun. 217, 357–362 (2003) [CrossRef] [Google Scholar]
  25. Y. Louyer, P. Juncar, M.D. Plimmer, T. Badr, F. Balembois, P. Georges, M.E. Himbert, Doubled single-frequency Nd :YLF ring laser coupled to a passive nonresonant cavity, Appl. Opt. 43, 1773 (2004) [CrossRef] [PubMed] [Google Scholar]
  26. F. Balembois, D. Boutard, E. Barnasson, M. Baudrier, R. Paries, C. Schwach, S. Forget, Efficient diode-pumped intracavity frequency-doubled cw Nd :YLF laser emitting in the red, Opt. Laser Technol. 38, 626–630 (2006) [CrossRef] [Google Scholar]
  27. R. Sarrouf, V. Sousa, T. Badr, G. Xu, J.-J. Zondy, Watt-level single-frequency tunable Nd :YLF/periodically poled KTiOPO4 red laser, Opt. Lett. 32, 2732 (2007) [CrossRef] [PubMed] [Google Scholar]
  28. R. Sarrouf, T. Badr, J.J. Zondy, Intracavity second-harmonic generation of diode-pumped continuous-wave single-frequency 1.3 μm Nd :YLiF4 lasers, J. Opt. A : Pure Appl. Opt. 10, 104011 (2008) [CrossRef] [Google Scholar]
  29. H. Vanherzeele, Thermal lensing measurement and compensation in a continuous-wave mode-locked Nd :YLF laser, Opt. Lett. 13, 369 (1988) [CrossRef] [PubMed] [Google Scholar]
  30. V. Magni, G. Cerullo, S. De Silvestri, O. Svelto, L.J. Qian, M. Danailov, Intracavity frequency doubling of a cw high-power TEM00 Nd :YLF laser, Opt. Lett. 18, 2111–2113 (1993) [CrossRef] [PubMed] [Google Scholar]
  31. G.D. Boyd, D.A. Kleinman, Parametric interaction of focused Gaussian light beams, J. Appl. Phys. 39, 3597 (1968) [CrossRef] [Google Scholar]
  32. Lasers, edited by A.E. Siegman (University Science Books, 1986), Chap. 12 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.