Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 1, Number 1, 2010
Page(s) 21 - 28
DOI https://doi.org/10.1051/ijmqe/2010007
Published online 19 April 2010
  1. http://nobelprize.org/
  2. X. Huang, M.J. Gordon, R.N. Zare, Current-monitoring method for measuring the electroosmotic flow rate in capillary zone elec-trophoresis, Anal. Chem. 60, 1837 (1988) [CrossRef]
  3. S. Devasenathipathy, J.G. Santiago, Electro-kinetic flow diagnostics, Micro- and nano-scale diagnostic techniques, edited by K.S. Breuer (Springer, New York, Berlin, Heidelberg, 2004)
  4. D. Sinton, Microscale flow visualization, Microfluid. Nanofluid. 1, 2 (2004)
  5. A.K. Prasad, Particle image velocimetry, Curr. Sci. 79, 51 (2000)
  6. A. Melling, Tracer particles and seeding for particle image velocimetry, Meas. Sci. Technol. 8, 1406 (1997) [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  7. A.K. Tieu, M.R. Mackenzie, E.B. Li, Measurements in microscopic flow with a solid-state LDA, Exp. Fluids 19, 293 (1995)
  8. M. Minor, A.J. van der Linde, H.P. va. Leeuwen,J. Lyklema, Dynamic aspects of electrophoresis and electroosmosis: a new fast method for measuring particle mobilities, J. Colloid Interface Sci. 189, 370 (1997) [CrossRef]
  9. D.A. Compton, J.K. Eaton, A high resolution laser Doppler anemometer for three-dimensional turbulent boundary layers, Exp. Fluids 22, 111 (1996) [CrossRef]
  10. R.J. Adrian, Twenty years of particle image velocimetry, Exp. Fluids 39, 159 (2005)
  11. R.J. Adrian, C. Yao, Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials, Appl. Opt. 24, 44 (1985) [CrossRef] [PubMed]
  12. E. Willert, M. Gharib, Digital particle image velocimetry, Exp. Fluids 10, 181 (1991)
  13. R.J. Adrian, Particle imaging techniques for experimental fluid mechanics, Annu. Rev. Fluid Mech. 23, 261 (1991) [CrossRef]
  14. R.J. Adrian, Dynamic ranges of velocity and spatial resolution of particle image velocimetry, Meas. Sci. Technol. 8, 1393 (1997) [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  15. H. Huang, D. Dabiri, M. Gharib, On errors of digital particle image velocimetry, Meas. Sci. Technol. 8, 1427 (1997) [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  16. S.M. Hagsäter, C.H. Westergaard, H. Bruus, J.P. Kutter, Investigations on LED illumination for micro-PIV including a novel front-lit configurations, Exp. Fluids 44, 211 (2008) [CrossRef]
  17. O. Chételat, K.C. Kim, Miniature particle image velocimetry system with LED in-line illumination, Meas. Sci. Technol. 13, 1006 (2002) [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  18. R.D. Keane, R.J. Adrian, Y. Zhang, Super resolution particle image velocimetry, Meas. Sci. Technol. 6, 754 (1995) [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  19. R.D. Keane, R.J. Adrian, Theory of cross-correlation analysis of PIV images, Appl. Scientific Res. 49, 191 (1992) [CrossRef]
  20. F. Scarano, Iterative image deformation methods in PIV, Meas. Sci. Technol. 13, R1 (2002) [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  21. M.G. Olsen, R.J. Adrian, Brownian motion and correlation in particle image velocimetry, Opt. Laser Technol. 32, 621 (2000) [CrossRef]
  22. D.A. McQuarrie, Satistical mechanics (New York, Harper and Row, 1976)
  23. James R. Janesick, Scientific Charge-Coupled Devices (SPIE Optical Engineering Press, WA, USA, 2001)
  24. A. Hijazi, V. Madhavan, A novel ultra-igh speed camera for digital image processing applications, Meas. Sci. Technol. 19, 1 (2009) [NASA ADS] [CrossRef] [EDP Sciences] [PubMed]
  25. D.R. Meldrum, M.R. Holl, Microscale bioanalytical systems, Science 297, 1197 (2002) [CrossRef] [PubMed]
  26. J.G. Santiago, S.T. Wereley, C.D. Meinhart, D.J. Beebe, R.J. Adrian, A particle image velocimetry system for microfluidics, Exp. Fluids 25, 316 (1998) [CrossRef]
  27. S. Devasenathipathy, J.G. Santiago, S.T. Wereley, C.D. Meinhart, K. Takehara, Particle imaging techniques for microfabricated fluidic systems, Exp. Fluids 34, 504 (2003)
  28. C.D. Meinhart, S.T. Wereley, J.G. Santiago, PIV measurements of a microchannel flow, Exp. Fluids 27, 414 (1999) [CrossRef]
  29. K. Shinohara, Y. Sugii, A. Aota, A. Hibara, M. Tokeshi, T. Kitamori, K. Okamoto, High-speed micro-PIV measurements of transient flow in microfluidic devices, Meas. Sci. Technol. 15, 1965 (2004) [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  30. M.R. Bown, J.M. MacInnes, R.W.K. Allen, Micro-PIV measurementand simulation in complex microchannel geometries, Meas. Sci. Technol. 1, 619 (2005) [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  31. M.G. Olsen, C.J. Bourdon, Out-of-plane motion effects in microscopic particle image velocimetry, J. Fluids Eng. 125, 895 (2003) [CrossRef]
  32. C.D. Meinhart, S.T. Wereley, The theory of diffraction-limited resolution in microparticle image velocimetry, Meas. Sci. Technol. 14, 1047 (2003) [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  33. A.K. Prasad, R.J. Adrian, C.C. Landreth, P.W. Offutt, Effect of resolution on the speed and accuracy of particle image velocimetry interrogation, Exp. Fluids 13, 105 (1992) [CrossRef]
  34. J.M. MacInnes, X. Du, R.W. Allen, Prediction of electrokinetic and pressure ?ow in a microchannel T-junction, Phys. Fluids 15, 1992 (2003) [CrossRef]
  35. V. Hohreiter, S.T. Wereley, M.G. Olsen, J.N. Chung, Cross-correlation analysis for temperature measurement, Meas. Sci. Technol. 13, 1072 (2002) [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  36. D.C. Tretheway, C.D. Meinhart, A generating mechanism for apparent fluid slip in hydrophobic microchannels, Phys. Fluids 16, 1509 (2004) [CrossRef]
  37. C. King, E. Walsh, R. Grimes, PIV measurements of flow within plugs in a microchannel (2007), Vols. 3 and 4, pp. 463–472
  38. L. Bitsch, L.H. Olesen, C.H. Westergaard, H. Bruus, H. Klank, J.P. Kutter, Micro particle-image velocimetry of bead suspensions and blood flows (2005), Vol. 39, pp. 505–511
  39. R. Lindken, M. Rossi, S. Grosse, J. Westerweel, Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines, Lab. Chip. 9, 2551 (2009) [CrossRef] [PubMed]
  40. S.J. Lee, S. Kim, Advanced particle-based velocimetry techniques for microscale flows (2009), Vol. 6, pp. 577–588
  41. Y.A. Hassan, R.E. Canaan, Full-field bubbly flow velocity measurements using a multiframe particle tracking technique, Exp. Fluids 12, 49 (1991)
  42. T. Uemura, F. Yamamoto, K. Ohmi, High speed algorithm of image analysis for real time measurement of two-dimensional velocity distribution Flow Visualization, edited by B. Khalighi et al. (ASME, FED-85, 1989), pp. 129–134
  43. K. Ohmi, H.Y. Li, Particle-tracking velocimetry with new algorithms, Meas. Sci. Technol. 11, 603 (2000) [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  44. M.R. Bown, J.M. MacInnes, R.W.K. Allen, W.B.J. Zimmerman, Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV, Meas. Sci. Technol. 17, 2175 (2006) [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  45. P.H. Biwole, W. Yan, Y. Zhang, J. Roux, A complete 3D particle tracking algorithm and its applications to the indoor airflow study, Meas. Sci. Technol. 20, 115403 (2009) [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  46. R.J.E. Walpot, P.C.J.N. Rosielle, C.W.M. van der Geld, Design of a set-up for high-accuracy 3D PTV measurements in turbulent pipe flow, Meas. Sci. Technol. 17, 3015 (2006) [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  47. A. Kaga, K. Yamaguchi, A. Kondo, Y. Inoue, T. Yamaguchi, S. Kamoi, Flow field estimation using PIV-data and fluid dynamic equations, in Proc. PIV-Fukui ’97 (1997), pp. 131–136
  48. E.A. Cowen, S.G. Monismith, A hybrid digital particle tracking velocimetry technique, Exp. Fluids 22, 199 (1997) [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.