Open Access
Issue |
Int. J. Metrol. Qual. Eng.
Volume 1, Number 1, 2010
|
|
---|---|---|
Page(s) | 21 - 28 | |
DOI | https://doi.org/10.1051/ijmqe/2010007 | |
Published online | 19 April 2010 |
- http://nobelprize.org/ [Google Scholar]
- X. Huang, M.J. Gordon, R.N. Zare, Current-monitoring method for measuring the electroosmotic flow rate in capillary zone elec-trophoresis, Anal. Chem. 60, 1837 (1988) [Google Scholar]
- S. Devasenathipathy, J.G. Santiago, Electro-kinetic flow diagnostics, Micro- and nano-scale diagnostic techniques, edited by K.S. Breuer (Springer, New York, Berlin, Heidelberg, 2004) [Google Scholar]
- D. Sinton, Microscale flow visualization, Microfluid. Nanofluid. 1, 2 (2004) [Google Scholar]
- A.K. Prasad, Particle image velocimetry, Curr. Sci. 79, 51 (2000) [Google Scholar]
- A. Melling, Tracer particles and seeding for particle image velocimetry, Meas. Sci. Technol. 8, 1406 (1997) [Google Scholar]
- A.K. Tieu, M.R. Mackenzie, E.B. Li, Measurements in microscopic flow with a solid-state LDA, Exp. Fluids 19, 293 (1995) [Google Scholar]
- M. Minor, A.J. van der Linde, H.P. va. Leeuwen,J. Lyklema, Dynamic aspects of electrophoresis and electroosmosis: a new fast method for measuring particle mobilities, J. Colloid Interface Sci. 189, 370 (1997) [Google Scholar]
- D.A. Compton, J.K. Eaton, A high resolution laser Doppler anemometer for three-dimensional turbulent boundary layers, Exp. Fluids 22, 111 (1996) [Google Scholar]
- R.J. Adrian, Twenty years of particle image velocimetry, Exp. Fluids 39, 159 (2005) [Google Scholar]
- R.J. Adrian, C. Yao, Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials, Appl. Opt. 24, 44 (1985) [Google Scholar]
- E. Willert, M. Gharib, Digital particle image velocimetry, Exp. Fluids 10, 181 (1991) [Google Scholar]
- R.J. Adrian, Particle imaging techniques for experimental fluid mechanics, Annu. Rev. Fluid Mech. 23, 261 (1991) [Google Scholar]
- R.J. Adrian, Dynamic ranges of velocity and spatial resolution of particle image velocimetry, Meas. Sci. Technol. 8, 1393 (1997) [Google Scholar]
- H. Huang, D. Dabiri, M. Gharib, On errors of digital particle image velocimetry, Meas. Sci. Technol. 8, 1427 (1997) [Google Scholar]
- S.M. Hagsäter, C.H. Westergaard, H. Bruus, J.P. Kutter, Investigations on LED illumination for micro-PIV including a novel front-lit configurations, Exp. Fluids 44, 211 (2008) [Google Scholar]
- O. Chételat, K.C. Kim, Miniature particle image velocimetry system with LED in-line illumination, Meas. Sci. Technol. 13, 1006 (2002) [Google Scholar]
- R.D. Keane, R.J. Adrian, Y. Zhang, Super resolution particle image velocimetry, Meas. Sci. Technol. 6, 754 (1995) [Google Scholar]
- R.D. Keane, R.J. Adrian, Theory of cross-correlation analysis of PIV images, Appl. Scientific Res. 49, 191 (1992) [Google Scholar]
- F. Scarano, Iterative image deformation methods in PIV, Meas. Sci. Technol. 13, R1 (2002) [Google Scholar]
- M.G. Olsen, R.J. Adrian, Brownian motion and correlation in particle image velocimetry, Opt. Laser Technol. 32, 621 (2000) [Google Scholar]
- D.A. McQuarrie, Satistical mechanics (New York, Harper and Row, 1976) [Google Scholar]
- James R. Janesick, Scientific Charge-Coupled Devices (SPIE Optical Engineering Press, WA, USA, 2001) [Google Scholar]
- A. Hijazi, V. Madhavan, A novel ultra-igh speed camera for digital image processing applications, Meas. Sci. Technol. 19, 1 (2009) [Google Scholar]
- D.R. Meldrum, M.R. Holl, Microscale bioanalytical systems, Science 297, 1197 (2002) [Google Scholar]
- J.G. Santiago, S.T. Wereley, C.D. Meinhart, D.J. Beebe, R.J. Adrian, A particle image velocimetry system for microfluidics, Exp. Fluids 25, 316 (1998) [Google Scholar]
- S. Devasenathipathy, J.G. Santiago, S.T. Wereley, C.D. Meinhart, K. Takehara, Particle imaging techniques for microfabricated fluidic systems, Exp. Fluids 34, 504 (2003) [Google Scholar]
- C.D. Meinhart, S.T. Wereley, J.G. Santiago, PIV measurements of a microchannel flow, Exp. Fluids 27, 414 (1999) [Google Scholar]
- K. Shinohara, Y. Sugii, A. Aota, A. Hibara, M. Tokeshi, T. Kitamori, K. Okamoto, High-speed micro-PIV measurements of transient flow in microfluidic devices, Meas. Sci. Technol. 15, 1965 (2004) [Google Scholar]
- M.R. Bown, J.M. MacInnes, R.W.K. Allen, Micro-PIV measurementand simulation in complex microchannel geometries, Meas. Sci. Technol. 1, 619 (2005) [Google Scholar]
- M.G. Olsen, C.J. Bourdon, Out-of-plane motion effects in microscopic particle image velocimetry, J. Fluids Eng. 125, 895 (2003) [Google Scholar]
- C.D. Meinhart, S.T. Wereley, The theory of diffraction-limited resolution in microparticle image velocimetry, Meas. Sci. Technol. 14, 1047 (2003) [Google Scholar]
- A.K. Prasad, R.J. Adrian, C.C. Landreth, P.W. Offutt, Effect of resolution on the speed and accuracy of particle image velocimetry interrogation, Exp. Fluids 13, 105 (1992) [Google Scholar]
- J.M. MacInnes, X. Du, R.W. Allen, Prediction of electrokinetic and pressure ?ow in a microchannel T-junction, Phys. Fluids 15, 1992 (2003) [Google Scholar]
- V. Hohreiter, S.T. Wereley, M.G. Olsen, J.N. Chung, Cross-correlation analysis for temperature measurement, Meas. Sci. Technol. 13, 1072 (2002) [Google Scholar]
- D.C. Tretheway, C.D. Meinhart, A generating mechanism for apparent fluid slip in hydrophobic microchannels, Phys. Fluids 16, 1509 (2004) [Google Scholar]
- C. King, E. Walsh, R. Grimes, PIV measurements of flow within plugs in a microchannel (2007), Vols. 3 and 4, pp. 463–472 [Google Scholar]
- L. Bitsch, L.H. Olesen, C.H. Westergaard, H. Bruus, H. Klank, J.P. Kutter, Micro particle-image velocimetry of bead suspensions and blood flows (2005), Vol. 39, pp. 505–511 [Google Scholar]
- R. Lindken, M. Rossi, S. Grosse, J. Westerweel, Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines, Lab. Chip. 9, 2551 (2009) [Google Scholar]
- S.J. Lee, S. Kim, Advanced particle-based velocimetry techniques for microscale flows (2009), Vol. 6, pp. 577–588 [Google Scholar]
- Y.A. Hassan, R.E. Canaan, Full-field bubbly flow velocity measurements using a multiframe particle tracking technique, Exp. Fluids 12, 49 (1991) [Google Scholar]
- T. Uemura, F. Yamamoto, K. Ohmi, High speed algorithm of image analysis for real time measurement of two-dimensional velocity distribution Flow Visualization, edited by B. Khalighi et al. (ASME, FED-85, 1989), pp. 129–134 [Google Scholar]
- K. Ohmi, H.Y. Li, Particle-tracking velocimetry with new algorithms, Meas. Sci. Technol. 11, 603 (2000) [Google Scholar]
- M.R. Bown, J.M. MacInnes, R.W.K. Allen, W.B.J. Zimmerman, Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV, Meas. Sci. Technol. 17, 2175 (2006) [Google Scholar]
- P.H. Biwole, W. Yan, Y. Zhang, J. Roux, A complete 3D particle tracking algorithm and its applications to the indoor airflow study, Meas. Sci. Technol. 20, 115403 (2009) [Google Scholar]
- R.J.E. Walpot, P.C.J.N. Rosielle, C.W.M. van der Geld, Design of a set-up for high-accuracy 3D PTV measurements in turbulent pipe flow, Meas. Sci. Technol. 17, 3015 (2006) [Google Scholar]
- A. Kaga, K. Yamaguchi, A. Kondo, Y. Inoue, T. Yamaguchi, S. Kamoi, Flow field estimation using PIV-data and fluid dynamic equations, in Proc. PIV-Fukui ’97 (1997), pp. 131–136 [Google Scholar]
- E.A. Cowen, S.G. Monismith, A hybrid digital particle tracking velocimetry technique, Exp. Fluids 22, 199 (1997) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.