Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 16, 2025
Article Number 2
Number of page(s) 13
DOI https://doi.org/10.1051/ijmqe/2024021
Published online 20 January 2025
  1. N. Convery, N. Gadegaard, 30 years of microfluidics, Micro Nano Eng. 2, 76–91 (2019) [CrossRef] [Google Scholar]
  2. D. Qin, Y. Xia, J.A. Rogers, R.J. Jackman, X.-M. Zhao, G.M. Whitesides, Microfabrication, microstructures and microsystems, in Microsystem Technology in Chemistry and Life Science, edited by A. Manz and H. Becker (Springer Berlin Heidelberg, Berlin, Heidelberg, 1998), pp. 1–20 [Google Scholar]
  3. R.G. Sweet, High frequency recording with electrostatically deflected ink jets, Rev. Sci. Instru. 36, 131 (1965) [CrossRef] [Google Scholar]
  4. E. Bassous, H.H. Taub, L. Kuhn, Ink jet printing nozzle arrays etched in silicon, Appl. Phys. Lett. 31, 135 (1977) [CrossRef] [Google Scholar]
  5. S.C. Terry, J.H. Jerman, J.B. Angell, A gas chromatographic air analyzer fabricated on a silicon wafer, IEEE Trans. Electron Dev. 26, 1880 (1979) [CrossRef] [Google Scholar]
  6. P. Simpson, D. Roach, A. Woolley, T. Thorsen, R. Johnston, G. Sensabaugh, R. Mathies, High-throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates, Proc. Natl. Acad. Sci. USA 95, 2256 (1998) [Google Scholar]
  7. A.T. Woolley, R.A. Mathies, Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips, Proc. Natl. Acad. Sci. USA 91, 11348 (1994) [CrossRef] [PubMed] [Google Scholar]
  8. H. Kambara, Development of capillary array DNA sequencers for genome analysis, Chem. Record 10, 8 (2010) [CrossRef] [PubMed] [Google Scholar]
  9. Q. Xiong, J. Cheng, Chapter 2 Chip Capillary Electrophoresis and Total Genetic Analysis Systems, in Perspectives in Bioanalysis, edited by Keith R. Mitchelson, Publisher Elsevier Vol. 2 (2007), pp. 45–95 [CrossRef] [Google Scholar]
  10. X. Hou, Y.S. Zhang, G.T. Santiago, M.M. Alvarez, J. Ribas, S.J. Jonas, P.S. Weiss, A.M. Andrews, J. Aizenberg, A. Khademhosseini, Interplay between materials and microfluidics, Nat. Rev. Mater. 2, 17016 (2017) [CrossRef] [Google Scholar]
  11. C.-W. Tsao, Polymer microfluidics: simple, low-cost fabrication process bridging academic lab research to commercialized production, Micromachines 7, 225 (2016) [CrossRef] [PubMed] [Google Scholar]
  12. T. Tang, Y. Yuan, Y. Yalikun, Y. Hosokawa, M. Li, Y. Tanaka, Glass based micro total analysis systems: materials, fabrication methods, and applications, Sens. Actuat. B 339, 129859 (2021) [CrossRef] [Google Scholar]
  13. ISO 19403-1:2022 Paints and Varnishes — Wettability — Part 1: Terminology and General Principle (2022) [Google Scholar]
  14. A. Venkateshwarlu, R.P. Bharti, Effects of surface wettability and flow rates on the interface evolution and droplet pinch-off mechanism in the cross-flow microfluidic systems, Chem. Eng. Sci. 267, 118279 (2023) [CrossRef] [Google Scholar]
  15. B. Zhao, C. MacMinn, R. Juanes, Wettability control on multiphase flow in patterned microfluidics, Proc. Natl. Acad. Sci. USA 113, 10251–10256 (2016) [CrossRef] [PubMed] [Google Scholar]
  16. S. Saxena, R. Joshi, Microfluidic devices: applications and role of surface wettability in its fabrication, in Surface Science, edited by Phuong Pham, Pratibha Goel, Samir Kumar, and Kavita Yadav, Publisher IntechOpen (2020) [Google Scholar]
  17. H. Bruus, Theoretical Microfluidics (Oxford University Press, 2008) [Google Scholar]
  18. X. Li, X. Chen, Y. Huang, X. Zhang, Effect of interface wettability on the flow characteristics of liquid in smooth microchannels, Acta Mech. 230, 2111–2123 (2019) [CrossRef] [Google Scholar]
  19. L. Zhigang, G. Ning, Z. Chengwu, Z. Xiaobao, Experimental study on flow and heat transfer in a 19.6-Μm microtube, Exp. Heat Transfer 22, 178 (2009) [CrossRef] [Google Scholar]
  20. F. Wang, X. Yue, S. Xu, L. Zhang, R. Zhao, J. Hou, Influence of wettability on flow characteristics of water through microtubes and cores, Chin. Sci. Bull. 54, 2256 (2009) [CrossRef] [Google Scholar]
  21. ISO 25178-2:2021 Geometrical Product Specifications (GPS) Surface Texture: Areal Part 2: Terms, Definitions and Surface Texture Parameters (2021) [Google Scholar]
  22. ISO 21920-2:2021 Geometrical Product Specifications (GPS) Surface Texture: Profile Part 2: Terms, Definitions and Surface Texture Parameters (2021) [Google Scholar]
  23. Y.-M. Kim, W.-S. Kim, S.-H. Lee, J.-Y. Baek, Effects of surface roughness on the flow characteristics in PDMS microchannels, in 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology, Vol. 2005 (2005), pp. 292–295 [CrossRef] [Google Scholar]
  24. X. Yuan, Z. Tao, H. Li, Y. Tian, Experimental investigation of surface roughness effects on flow behavior and heat transfer characteristics for circular microchannels, Chin. J. Aeronaut. 29, 1575 (2016) [CrossRef] [Google Scholar]
  25. P. Ranjan, Investigations on the flow behaviour in microfluidic device due to surface roughness: a computational fluid dynamics simulation, Microsyst. Technolog. 25, 3779–3789 (2019) [CrossRef] [Google Scholar]
  26. V. Silverio, S. Guha, A. Keiser, R. Natu, D. Reyes, H. Heeren, N. Verplanck, L. Herbertson, Overcoming technological barriers in microfluidics: leakage testing, Front. Bioeng. Biotechnol. 10, 958582 (2022) [CrossRef] [Google Scholar]
  27. T. Wang, J. Wu, T. Chen, F. Li, T. Zuo, S. Liu, Surface roughness analysis and thermal bonding of microfluidic chips fabricated by CD/DVD manufacturing technology, Microsyst. Technolog. 23, (2017) [Google Scholar]
  28. E. Batista, V. Silverio, F. Ogheard, C. Pecnik, H. Becker, A. Niemann, MFMET project − establishing metrology standards in microfluidic devices, in Conference: 19th International Flow Measurement Conference 2022 (2023) [Google Scholar]
  29. E. Batista, J. Sousa, F. Saraiva, A. Lopes, V. Silverio, R. Martins, L. Martins, The importance of dimensional traceability in microfluidic systems, Metrology 4, 240 (2024) [CrossRef] [Google Scholar]
  30. L. Crouzier, C. Pecnik, MFMET A3. 2.4: Test Protocol for Surface Roughness (2022) [Google Scholar]
  31. C. Pecnik, L. Crouzier, F. Saraiva, E. Batista, P. Neves, V. Silverio, MFMET A3. 2.7 Documented Example of Surface Roughness Measurements (2023) [Google Scholar]
  32. C. Pecnik et al., MFMET Deliverable 5 − Guidelines for the Measurement of Key Performance Parameters of Microfluidic Connections Including the Identification of Key Properties in an Interface (2024) [Google Scholar]
  33. F. Ogheard, MFMET A3. 2.5. Documented Example of Wettability Test Protocol (2024) [Google Scholar]
  34. K. Romieu, A. Dalvallée, MFMET Webinar − 03. Wettability and Surface Roughness (2024) [Google Scholar]
  35. C. Pecnik, L. Crouzier, F. Saraiva, E. Batista, P. Neves, V. Silverio, MFMET A3. 2.7 Documented Example of Surface Roughness Measurements [Data Set], (2024) [Google Scholar]
  36. ISO 19403-2:2024 Paints and Varnishes — Wettability — Part 2: Determination of the Surface Free Energy of Solid Surfaces by Measuring the Contact Angle (2024) [Google Scholar]
  37. M. Heshmati, M. Piri, Experimental investigation of dynamic contact angle and capillary rise in tubes with circular and noncircular cross sections, Langmuir 30, 14151 (2014) [Google Scholar]
  38. S. Ehlers, J. Könemann, O. Ott, H. Wolf, J. Šetina, A. Furtado, W. Sabuga, Selection and characterization of liquids for a low pressure interferometric liquid column manometer, Measurement 132, 191 (2019) [Google Scholar]
  39. A.O. Olanrewaju, M. Beaugrand, M. Yafia, D. Juncker, Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits, Lab Chip 18, 2323 (2018) [CrossRef] [PubMed] [Google Scholar]
  40. S. Son, L. Chen, Q. Kang, D. Derome, J. Carmeliet, Contact angle effects on pore and corner arc menisci in polygonal capillary tubes studied with the pseudopotential multiphase lattice boltzmann model, Computation 4, 12 (2016) [CrossRef] [Google Scholar]
  41. V. Heiskanen, K. Marjanen, P. Kallio, Machine vision based measurement of dynamic contact angles in microchannel flows, J. Bionic Eng. 5, 282 (2008) [CrossRef] [Google Scholar]
  42. M. Jafari, J. Jung, Direct measurement of static and dynamic contact angles using a random micromodel considering geological CO2 sequestration, Sustainability 9, 2352 (2017) [CrossRef] [Google Scholar]
  43. KRÜSS, Calibration Standards CP24, https://www.kruss-scientific.com/en/products-services/accessories/cp24 [Google Scholar]
  44. ImageJ Image Processing and Analysis in Java, https://imagej.net/ij/index.html [Google Scholar]
  45. D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci. 13, 1741 (1969) [CrossRef] [Google Scholar]
  46. D.H. Kaelble, Dispersion-polar surface tension properties of organic solids, J. Adhesion 2, 66 (1970) [CrossRef] [Google Scholar]
  47. ISO 19403-2:2017 Paints and Varnishes — Wettability — Part 2: Determination of the Surface Free Energy of Solid Surfaces by Measuring the Contact Angle (2017) [Google Scholar]
  48. ANSI, DIN EN 10049:2014 Measurement Of Roughness Average Ra And Peak Count RPc On Metallic Flat Products (2014) [Google Scholar]
  49. N. Jalili, K. Laxminarayana, A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences, Mechatronics 14, 907 (2004) [CrossRef] [Google Scholar]
  50. R. Garcı́a, R. Pérez, Dynamic atomic force microscopy methods, Surf. Sci. Rep. 47, 197 (2002) [CrossRef] [Google Scholar]
  51. F. Marinello, Atomic force microscopy, in CIRP Encyclopedia of Production Engineering (Springer, 2014), pp. 62–66. [CrossRef] [Google Scholar]
  52. Veeco, Veeco Dimension 3100 Manual (2004) [Google Scholar]
  53. BRUKER, OLTESPA-R3, https://www.brukerafmprobes.com/p-3865-oltespa-r3.aspx [Google Scholar]
  54. L. Crouzier, A. Delvallee, S. Ducourtieux, L. Devoille, G. Noircler, C. Ulysse, O. Tache, E. Barruet, C. Tromas, N. Feltin, Development of a new hybrid approach combining AFM and SEM for the nanoparticle dimensional metrology, Beilstein J. Nanotechnol. 10, 1523 (2019) [CrossRef] [Google Scholar]
  55. Digital Surf, What's inside MountainsLab® (n.d.) [Google Scholar]
  56. ISO 25178-6:2010 Geometrical Product Specifications (GPS) Surface Texture: Areal Part 6: Classification of Methods for Measuring Surface Texture (2010) [Google Scholar]
  57. ISO 25178-602:2010 Geometrical Product Specifications (GPS) Surface Texture: Areal Part 602: Nominal Characteristics of Non-Contact (Confocal Chromatic Probe) Instruments (2010) [Google Scholar]
  58. A. Mínguez Martínez, P. Maresca, J. Caja, J. de Vicente y Oliva, Results of a surface roughness comparison between stylus instruments and confocal microscopes, Materials 15, 5495 (2022) [Google Scholar]
  59. T. Vorburger, H.-G. Rhee, T. Renegar, J.-F. Song, X. Zheng, Comparison of optical and stylus methods for measurement of surface texture, Int. J. Adv. Manufactur. Technol. 33, 110 (2007) [CrossRef] [Google Scholar]
  60. R. Leach, The Measurement of Surface Texture Using Stylus Instruments (2001) [Google Scholar]
  61. Mahr, MarSurf The Newest Generation of Tactile Measuring Technology (2019) [Google Scholar]
  62. ISO 21920-3:2021 Geometrical Product Specifications (GPS) − Surface Texture: Profile − Part 3: Sepcification Operators (2021) [Google Scholar]
  63. JCGM, JCGM 100:2008 GUM 1995 with Minor Corrections Evaluation of Measurement Data — Guide to the Expression of Uncertainty in Measurement (2008) [Google Scholar]
  64. D. Freedman, R. Pisani, R. Purves, Statistics, 4th edition (W.W. Norton & Company, 2007) [Google Scholar]
  65. M. Newville, T. Stensitzki, R. Otten et al., LMFIT, https://lmfit.github.io/lmfit-py/ [Google Scholar]
  66. R. Borah, A. Kumar, M. Das, A. Ramteke, Surface functionalization-induced enhancement in surface properties and biocompatibility of polyaniline nanofibers, RSC Adv. 5, 48971–48982 (2015) [CrossRef] [Google Scholar]
  67. Y. He, I. Dobryden, J. Pan, A. Ahniyaz, T. Deltin, R. Corkery, P. Claesson, Nano-scale mechanical and wear properties of a waterborne hydroxyacrylic-melamine anti-corrosion coating, Appl. Surf. Sci. 457, 548–558 (2018) [CrossRef] [Google Scholar]
  68. G. Ström, M. Fredriksson, P. Stenius, Contact angles, work of adhesion, and interfacial tensions at a dissolving hydrocarbon surface, J. Colloid Interface Sci. 119, 352 (1987) [CrossRef] [Google Scholar]
  69. R.N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28, 988 (1936) [CrossRef] [Google Scholar]
  70. R.N. Wenzel, Surface roughness and contact angle, J. Phys. Colloid Chem. 53, 1466 (1949) [CrossRef] [Google Scholar]
  71. A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40, 546 (1944) [CrossRef] [Google Scholar]
  72. A. Hongru, L. Xiangqin, S. Shuyan, Z. Ying, L. Tianqing, Measurement of wenzel roughness factor by laser scanning confocal microscopy, RSC Adv. 7, 7052 (n.d.) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.