Open Access
Issue |
Int. J. Metrol. Qual. Eng.
Volume 15, 2024
|
|
---|---|---|
Article Number | 18 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/ijmqe/2024017 | |
Published online | 04 October 2024 |
- L. Zhao, G. Qi, Y. Dai, H.X. Ou, Z.X. Xing, L. Zhao, Y.F. Yan, Integrated dynamic risk assessment of buried gas pipeline leakages in urban areas, J. Loss Prev. Process Ind. 83, 105049 (2023) [CrossRef] [Google Scholar]
- Y. Liu, Q.Q. Shang, L. Chen, E.X. Wang, X.Y. Huang, X.B. Pang, Y.H. Lu, L. Zhou, J. Zhou, Z.W. Wang, Y. Lyu, Application of portable ch4 detector based on tdlas technology in natural gas purification plant, Atmosphere 14, 1709 (2023) [CrossRef] [Google Scholar]
- H.F. Lu, T. Iseley, S. Behbahani, L.D. Fu, Leakage detection techniques for oil and gas pipelines: state-of-the-art, Tunn. Undergr. Space Technol. 98, 103249 (2020) [CrossRef] [Google Scholar]
- L. Golston, N. Aubut, M. Frish, S. Yang, R. Talbot, C. Gretencord, J. McSpiritt, M. Zondlo, Natural gas fugitive leak detection using an unmanned aerial vehicle: localization and quantification of emission rate, Atmosphere 9, 333 (2018) [CrossRef] [Google Scholar]
- B. Martinez, T.W. Miller, A.P. Yalin, Cavity ring-down methane sensor for small unmanned aerial systems, Sensors 20, 454 (2020) [CrossRef] [PubMed] [Google Scholar]
- J.C.V. Fischer, D. Cooley, S. Chamberlain, A. Gaylord, C.J. Griebenow, S.P. Hamburg, J. Salo, R. Schumacher, D. Theobald, J. Ham, Rapid, vehicle-based identification of location and magnitude of urban natural gas pipeline leaks, Environ. Sci. Technol. 51, 4091–4099 (2017) [CrossRef] [PubMed] [Google Scholar]
- K.Y. Zheng, L. Yu, C.T. Zheng, Z.H. Xi, Y.X. Zhang, G. Yan, H.P. Zhang, Y. Zhang, Y. Wang, F.K. Tittel, Vehicle-deployed off-axis integrated cavity output spectroscopic CH4/C2H6 sensor system for mobile inspection of natural gas leakage, ACS Sens. 7, 1685–1697 (2022) [CrossRef] [Google Scholar]
- H. Taheri, N. Mozayani, A study on quadruped mobile robots, Mech. Mach. Theory 190, 105448 (2023) [CrossRef] [Google Scholar]
- M.Y. Zhang, M. Sutcliffe, D. Carswell, Q.P. Yang, Robotic path planning using NDT ultrasonic data for autonomous inspection, Int. J. Metrol. Qual. Eng. 14, 16 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
- B. Hichri, A. Gallala, F. Giovannini, S. Kedziora, Mobile robots path planning and mobile multirobots control: a review, Robotica 40, 4257–4270 (2022) [CrossRef] [Google Scholar]
- A. Sedeño-noda, M. Colebrook, A biobjective dijkstra algorithm, Eur. J. Oper. Res. 276, 106–118 (2019) [CrossRef] [Google Scholar]
- H. Li, Z. Chu, Y. Fang, H.T. Liu, M.Y. Zhang, K.F. Wang, J.W. Huang, Source-seeking multi-robot team simulator as container of nature-inspired metaheuristic algorithms and Astar algorithm, Expert Syst. Appl. 233, 120932 (2023) [CrossRef] [Google Scholar]
- D.C. Chen, S. Li, L.F. Liao, A recurrent neural network applied to optimal motion control of mobile robots with physical constraints, Appl. Soft Comput. 85, 105880 (2019) [CrossRef] [Google Scholar]
- J.B. Zheng, M.H. Ding, L. Sun, H.W. Liu, Distributed stochastic algorithm based on enhanced genetic algorithm for path planning of multi-uav cooperative area search, IEEE Trans. Intell. Transport. Syst. 24, 8290–8303 (2023) [CrossRef] [Google Scholar]
- L. Zhang, Y.G. Zhang, Y.F. Li, Mobile robot path planning based on improved localized particle swarm optimization, IEEE Sensors J. 21, 6962–6972 (2021) [CrossRef] [Google Scholar]
- L.X. Liu, X. Wang, X. Yang, H.G. Liu, J.P. Li, P.F. Wang, Path planning techniques for mobile robots: review and prospect, Expert Syst. Appl. 227, 120254 (2023) [CrossRef] [Google Scholar]
- J. Ding, Y.X. Zhou, X. Huang, K. Song, S.Q. Lu, L.S. Wang, An improved RRT* algorithm for robot path planning based on path expansion heuristic sampling, J. Comput. Sci. 67, 101937 (2023) [CrossRef] [Google Scholar]
- H.Y. Tu, Y.Z. Deng, Q.Y. Li, M.J. Song, X.J. Zheng, Improved RRT global path planning algorithm based on bridge test, Robot. Auton. Syst. 171, 104570 (2024) [CrossRef] [Google Scholar]
- Y.M. Liang, H.Y. Zhao, CCPF-RRT*: an improved path planning algorithm with consideration of congestion, Expert Syst. Appl. 228, 120403 (2023) [CrossRef] [Google Scholar]
- J.D. Gammell, S.S. Srinivasa, T.D. Barfoot, Informed RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic, in: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems 2997–3004 (2014) [Google Scholar]
- J.F. Duhé, S. Victor, P. Melchior, Contributions on artificial potential field method for effective obstacle avoidance, Fract. Calc. Appl. Anal. 24, 421–446 (2021) [CrossRef] [Google Scholar]
- J. Kim, G.H. Yang, Improvement of dynamic window approach using reinforcement learning in dynamic environments, Int. J. Control Autom. Syst. 20, 2983–2992 (2022) [CrossRef] [Google Scholar]
- B. Wu, X.N. Chi, C.C. Zhao, W. Zhang, Y. Lu, D. Jiang, Dynamic path planning for forklift AGV based on smoothing A* and improved DWA hybrid algorithm, Sensors 22, 7079 (2022) [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.