Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 15, 2024
Article Number 19
Number of page(s) 14
DOI https://doi.org/10.1051/ijmqe/2024015
Published online 04 October 2024
  1. R Core Team. R: Alanguage and environment for S statistical S computing. (R S Foundation for Statistical Computing, Vienna, AT, 2022) [Google Scholar]
  2. T.M. Therneau, Coxme: mixed effects Cox models. R package version 2.2-18.1; 2022. https://CRAN.R-project.org/package=coxme [Google Scholar]
  3. D.R. Cox, Regression models and life tables (with discussion), J. Royal Stat. Soc. Ser. B. 34, 187–220 (1972) [CrossRef] [Google Scholar]
  4. J.P. Fine, R.J. Gray, A proportional hazards model for the subdistribution of a competing risk, J. Am. Stat. Assoc. 94, 496–509 (1999) [CrossRef] [Google Scholar]
  5. F. Bertocci, A. Grandoni, A.T. Djuric-Rissner, Scanning acoustic microscopy (SAM): a robust method for defect detection during the manufacturing process of ultrasound probes for medical imaging, Sensors 19, 4868–4886 (2019) [CrossRef] [PubMed] [Google Scholar]
  6. F. Bertocci, A. Grandoni, M. Fidanza, R. Berni, A guideline for implementing a robust optimization of a complex multi-stage manufacturing process, Appl. Sci. 11, 1–19 (2021) [Google Scholar]
  7. A.M. Vitikainen, J.I. Peltonen, E. Vartiainen, Routine ultrasound quality assurance in a multi-unit radiology department: a retrospective evaluation of transducer failures, Ultrasound Med. Biol. 43, 1930–1937 (2017) [CrossRef] [Google Scholar]
  8. W. Ding, M. Bavencoffe, M. Lethiecq, Modeling and experimental characterization of bonding delaminations in single-element ultrasonic transducer, Materials 14, 2269 (2021) [CrossRef] [PubMed] [Google Scholar]
  9. N.J. Dudley, D.J. Woolley, Blinded comparison between an in-air reverberation method and an electronic probe tester in the detection of ultrasound probe faults, Ultrasound Med. Biol. 43, 2954–2958 (2017) [CrossRef] [Google Scholar]
  10. J. Vachutka, L. Dolezal, C. Kollmann, J. Klein, The effect of dead elements on the accuracy of Doppler ultrasound measurements, Ultrason Imaging. 36, 18–34 (2014) [CrossRef] [PubMed] [Google Scholar]
  11. R. Lorentsson, N. Hosseini, L.G. Mansson, M. Bath, Evaluation of an automatic method for detection of defects in linear and curvilinear ultrasound transducers, Phys. Med. 84, 33–40 (2021) [CrossRef] [Google Scholar]
  12. R. Lorentsson, N. Hosseini, J.O. Johansson, W. Rosenberg, B. Stenborg, L.G. Mansson, M. Bath, Method for automatic detection of defective ultrasound linear array transducers based on uniformity assessment of clinical images − a case study, J. Appl. Clin. Med. Phys. 19, 265–274 (2018) [CrossRef] [Google Scholar]
  13. L. Wang, B. Li, B. Hu, G. Shen, Y. Zhen, Y. Zheng, Failure mode effect and criticality analysis of ultrasound device by classification tracking, BMC Health Serv. Res. 22, 1–10 (2022) [CrossRef] [Google Scholar]
  14. E. Sassaroli, A. Scorza, C. Crake, S.A. Sciuto, M. Park, Breast ultrasound technology and performance evaluation of ultrasound equipment: B‐ Mode. IEEE Trans. Ultrason. Ferroelectr. Fr eq. Control. 64, 192–205 (2017) [CrossRef] [PubMed] [Google Scholar]
  15. W.Q. Meeker, L.A. Escobar: statistical methods for reliability data (John Wiley & Sons, New York, 1998) [Google Scholar]
  16. P.D. Allison: Survival analysis using SAS − a practical guide, 2nd edn. (SAS Institute, Cary (US-NC), 2010) [Google Scholar]
  17. L. Duchateau, P. Janssen, The frailty model (Springer, New York, 2007) [Google Scholar]
  18. A. Wienke, Frailty models in survival analysis (CRC Press, Amsterdam, The Netherland, 2010) [CrossRef] [Google Scholar]
  19. J.W. Vaupel, K.G. Manton, E. Stallard, The impact of heterogeneity in individual frailty on the dynamics of mortality, Demography 16, 439–454 (1979) [CrossRef] [PubMed] [Google Scholar]
  20. T.A. Balan, M. Putter, A tutorial on frailty models, Stat. Methods Med. Res. 29, 3424–3454 (2020) [CrossRef] [PubMed] [Google Scholar]
  21. J.H. Abbring, G.J. Van Den Berg, The unobserved heterogeneity distribution in duration analysis, Biometrika 94, 87–99 (2007) [CrossRef] [Google Scholar]
  22. S. Ripatti, J. Palmgren, Estimation of multivariate frailty models using penalized partial likelihood, Biometrics 56, 1016–1022 (2000) [CrossRef] [PubMed] [Google Scholar]
  23. T.M. Therneau, P.M. Grambsch, V.S. Pankratz, Penalized survival models and frailty, J. Computat. Graph. Stat. 12, 156–175 (2003) [CrossRef] [Google Scholar]
  24. C. Elbers, G. Ridder, True and spurious duration dependence: the identifiability of the proportional hazard model, Rev. Economic. Studies. 49, 403–409 (1982) [CrossRef] [Google Scholar]
  25. Y. Lee Y, J.A.Nelder, Hierarchical generalized linear models (with discussion), J. R. Stat. Soc. B 58, 619–678 (1996) [CrossRef] [Google Scholar]
  26. R. Berni, M. Catelani, C. Fiesoli, V.L. Scarano, A comparison of alloy-surface finish combinations considering different component package types and their impact on soldering reliability, IEEE Trans. Reliab. 65, 272–281 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.