Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 14, 2023
Article Number 15
Number of page(s) 11
DOI https://doi.org/10.1051/ijmqe/2023016
Published online 05 December 2023
  1. IEA, Global Status Report for Buildings and Construction 2019-Towards a zero-emissions, efficient and resilient buildings and construction sector, 2019. https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019 [Google Scholar]
  2. A. Sharma, A. Saxena, M. Sethi, V. Shree, Varun, Life cycle assessment of buildings: a review, Renew. Sustain. Energy Rev. 15, 871–875 (2011) [CrossRef] [Google Scholar]
  3. L. Cabeza, L. Rincon, V. Vilarino, G. Perez, A. Castell, Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the buildings sector: a review, Renew. Sustain. Energy Rev. 29, 394–416 (2014) [CrossRef] [Google Scholar]
  4. ISO 1404 0, Environmental management − Life cycle assessment − Principles and framework, 2006 [Google Scholar]
  5. ISO 1404 4, Environmental management − Life cycle assessment − Requirements and guidelines, 2006 [Google Scholar]
  6. C. Roux, P. Schalbart, B. Peuportier, Accounting for temporal variation of electricity production and consumption in the LCA of an energy-efficient house, J. Clean. Prod. 113, 532–540 (2016) [CrossRef] [Google Scholar]
  7. H. Feng, J. Zhao, H. Zhang, S. Zhu, D. Li, N. Thurairajah, Uncertainties in whole-building life cycle assessment: A systematic review, J. Build. Eng. 104191 (2022) [Google Scholar]
  8. E. Marsh, S. Allen, L. Hattam, Tackling uncertainty in life cycle assessments for the built environment: a review, Build. Environ. 109941 (2022) [Google Scholar]
  9. A.E. Björklund, Survey of approaches to improve reliability in LCA, Int. J. Life Cycle Assess. 7, 64–72 (2002) [CrossRef] [Google Scholar]
  10. M.-L. Pannier, Etude de la quantification des incertitudes en analyse de cycle de vie des bâtiments, PhD thesis, MINES ParisTech PSL, 2017 [Google Scholar]
  11. B. Iooss, P. Lemaître, A review on global sensitivity analysis methods, in: Uncertain. Manag. Simul. −Optim. Complex Syst., Springer, 2014, pp. 101–122 [Google Scholar]
  12. R. Faivre, B. Iooss, S. Mahévas, D. Makowski, H. Monod, Analyse de sensibilité et exploration de modèles − Application aux sciences de la nature et de l'environnement, Quae, 2013 [Google Scholar]
  13. I. Sobol, Sensitivity estimates for nonlinear mathematical models, Math. Model. Comput. Exp. 1, 407–414 (1993) [Google Scholar]
  14. M.-L. Pannier, P. Schalbart, B. Peuportier, Comprehensive assessment of sensitivity analysis methods for the identification of influential factors in building life cycle assessment, J. Clean. Prod. 199, 466–480 (2018) [CrossRef] [Google Scholar]
  15. A.-T. Nguyen, S. Reiter, A performance comparison of sensitivity analysis methods for building energy models, Build. Simul. 8, 651–664 (2015) [CrossRef] [Google Scholar]
  16. E.A. Groen, E.A.M. Bokkers, R. Heijungs, I.J.M. de Boer, Methods for global sensitivity analysis in life cycle assessment, Int. J. Life Cycle Assess. 1–13 (2016) [Google Scholar]
  17. M.H. Kristensen, S. Petersen, Choosing the appropriate sensitivity analysis method for building energy model-based investigations, Energy Build. 130, 166–176 (2016) [CrossRef] [Google Scholar]
  18. S. Yang, W. Tian, E. Cubi, Q. Meng, Y. Liu, L. Wei, Comparison of sensitivity analysis methods in building energy assessment, Procedia Eng. 146, 174–181 (2016) [CrossRef] [Google Scholar]
  19. S. Akkari, Etude et amélioration de l'application de Bayesian calibration dans modèle énergétique des bâtiment, PhD thesis, Université Paris sciences et lettres, 2022 [Google Scholar]
  20. M.D. Morris, Factorial sampling plans for preliminary computational experiments, Technometrics. 33, 161–174 (1991) [CrossRef] [Google Scholar]
  21. M.J.W. Jansen, Analysis of variance designs for model output, Comput. Phys. Commun. 117, 35–43 (1999) [CrossRef] [Google Scholar]
  22. A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Comput. Phys. Commun. 181, 259–270 (2010) [Google Scholar]
  23. H. Monod, C. Naud, D. Makowski, Uncertainty and sensitivity analysis for crop models, in: Work. Dyn. Crop Models Eval. Anal. Parameterization Appl., 2006, pp. 55–100 [Google Scholar]
  24. A. Janon, T. Klein, A. Lagnoux-Renaudie, M. Nodet, C. Prieur, Asymptotic normality and efficiency of two Sobol index estimators, ESAIM Probab. Stat. EDP Sci. 342–364 (2014) [CrossRef] [EDP Sciences] [Google Scholar]
  25. B. Peuportier, I. Blanc-Sommereux, Simulation tool with its expert interface for the thermal design of multizone buildings, Int. J. Sol. Energy. 8, 109–120 (1990) [CrossRef] [Google Scholar]
  26. IZUBA Energies, Software Pleiades, IZUBA Énerg. https://www.izuba.fr/logiciels/outils-logiciels/ [Google Scholar]
  27. A. Brun, C. Spitz, E. Wurtz, L. Mora, Behavioural comparison of some predictive tools used in a low-energy building, in: Elev. Int. IBPSA Conf., Glasgow, Scotland, 27–30 July 2009, 2009, pp. 27–30 [Google Scholar]
  28. F. Munaretto, T. Recht, P. Schalbart, B. Peuportier, Empirical validation of different internal superficial heat transfer models on a full-scale passive house, J. Build. Perform. Simul. 1–22 (2017) [Google Scholar]
  29. W. Tian, A review of sensitivity analysis methods in buildings energy analysis, Renew. Sustain. Energy Rev. 20, 411–419 (2013) [CrossRef] [Google Scholar]
  30. S. Ligier, P. Schalbart, B. Peuportier, Development of a methodology to guaranteed energy performance, in: Eco-Des. Build. Infrastruct., CRC Press, 2020 [Google Scholar]
  31. P. Schalbart, E. Vorger, B. Peuporter, Stochastic prediction of residents' activities and related energy management, in: S. Ploix, M. Amayri, N. Bouguila (Eds.), Energy Smart Homes Algorithms Technol. Appl., Springer International Publishing, Cham, 2021, pp. 543–604 [Google Scholar]
  32. B. Polster, Contribution à l'étude de l'impact environnemental des bâtiments par analyse du cycle de vie, PhD thesis, École nationale supérieure des mines de Paris, 1995 [Google Scholar]
  33. E. Popovici, Contribution to the life cycle assessment of settlements, PhD thesis, École Nationale Supérieure des Mines de Paris, 2005 [Google Scholar]
  34. B. Peuportier, D. Kellenberger, D. Anink, H. Mötzl, J. Anderson, S. Vares, J. Chevalier, H. König, Inter-comparison and benchmarking of LCA-based environmental assessment and design tool, in: Varsovie, 2004, p. 74 [Google Scholar]
  35. N. Salmon, L. Duclos, F. Filit, B. Peuportier, G. Herfray, J. Chevalier, N. Schiopu, S. Lasvaux, A. Lebert, J.-L. Sénégas, R. Mikolase, O. Sidler, T. Riester, Connaissance de l'impact environnemental des bâtiments // COIMBA 2011, Développement des outils d'évaluation de la qualité environnementale des bâtiments par analyse de cycle de vie, Nobatek, ARMINES, CSTB, IZUBA Energies, ENERTECH, 2011. http://www.nobatek.com/downloads/Etudes%20publiques/Coimba_Synthese_NOBATEK.pdf [Google Scholar]
  36. A. Lebert, ARMINES − CES, BYCN, CSTB, Fédération maisons de qualité, IZUBA Energies, Projet ANR BENEFIS: Bilan ENergétique et Environnemental FIable Simple et reproductible des bâtiments, Tâche 5: diffusion et communication, Rapport final, ANR 2011 VILD 001 01, DEE/EICV –14.100, 2014. extranet.cstb.fr/sites/anr/benefis/../Rapports%20du%20projet/BENEFIS_5_Com.pdf [Google Scholar]
  37. IPCC Working Group I, Climate Change 2013 The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2013 [Google Scholar]
  38. R. Frischknecht, F. Wyss, S.B. Knöpfel, T. Lützkendorf, M. Balouktsi, Cumulative energy demand in LCA: the energy harvested approach, Int. J. Life Cycle Assess. 20, 957–969 (2015) [CrossRef] [Google Scholar]
  39. J.B. Guinée, Handbook on life cycle assessment operational guide to the ISO standards, Int. J. Life Cycle Assess. 7, 311–313 (2002) [CrossRef] [Google Scholar]
  40. B.P. Weidema, Bauer, R. Hischier, C. Mutel, T. Nemecek, J. Reinhard, C. Vadenbo, G. Wernet, Overview and methodology, Data quality guideline for the Ecoinvent database version3, Ecoinvent Report 1(v3), St. Gallen: The ecoinvent Centre, 2013 [Google Scholar]
  41. M. Goedkoop, R. Heijungs, M. Huijbregts, A. de Schryver, J. Struijs, R. van Zelm, ReCiPe 2008 − A life cycle impact assessment method wich comprises harmonised category indicators at the midpoint and the endpoint level, First edition, Report I: Characterisation, 2013 [Google Scholar]
  42. R.K. Rosenbaum, T.M. Bachmann, L.S. Gold, M.A.J. Huijbregts, O. Jolliet, R. Juraske, A. Koehler, H.F. Larsen, M. MacLeod, M. Margni, T.E. McKone, J. Payet, M. Schuhmacher, D. van de Meent, M.Z. Hauschild, USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment, Int. J. Life Cycle Assess. 13, 532–546 (2008) [CrossRef] [Google Scholar]
  43. Pannier, Marie-Lise, Patrick Schalbart, et Bruno Peuportier, Dealing with uncertainties in comparative building life cycle assessment, Build. Environ. 242, 110543 (2023) [CrossRef] [Google Scholar]
  44. G. Myhre, S. Drew, Anthropogenic and Natural Radiative Forcing − Supplementary Material of Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F.,D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex P.M. Midgley (eds.)], 2013. http://www.ipcc.ch/report/ar5/wg1/ [Google Scholar]
  45. INIES, French environmental database for construction product: Base de donnée INIES, 2015. http://www.base-inies.fr/inies/. [Google Scholar]
  46. ecoinvent, Ecoinvent database, https://ecoinvent.org/ [Google Scholar]
  47. A. Merzkirch, S. Maas, F. Scholzen, D. Waldmann, Field tests of centralized and decentralized ventilation units in residential buildings − Specific fan power, heat recovery efficiency, shortcuts and volume flow unbalances, Energy Build. 116, 376–383 (2016) [CrossRef] [Google Scholar]
  48. I.A. Macdonald, Quantifying the effects of uncertainty in building simulation, University of Strathclyde. Dept. of Mechanical Engineering, 2002 [Google Scholar]
  49. C. Spitz, L. Mora, E. Wurtz, A. Jay, Practical application of uncertainty analysis and sensitivity analysis on an experimental house, Energy Build. 55, 459–470 (2012) [CrossRef] [Google Scholar]
  50. E. Hoxha, G. Habert, J. Chevalier, M. Bazzana, R. Le Roy, Method to analyse the contribution of material's sensitivity in buildings' environmental impact, J. Clean. Prod. 66, 54–64 (2014) [CrossRef] [Google Scholar]
  51. M.-L. Pannier, Analyse de cycle de vie des maisons passives de la plateforme INCAS, INSA de Strasbourg, 2014, http://eprints2.insa-strasbourg.fr/1743/1/Pannier_Marie-Lise_GCE_-_PFE_-_Synth%C3%A8se.pdf [Google Scholar]
  52. CETE Sud-Ouest, Transports de matériaux de carrières et de construction en Poitou-Charentes, 2002, http://www.ort-poitou-charentes.asso.fr/wp-content/uploads/2015/06/materiauxdecar.pdf [Google Scholar]
  53. CETE Lyon, Prévention et gestion des déchets issus de chantier du bâtiment et des travaux publics. Guide méthodologique à l'attention des Conseils Généraux et de la région Ile-de-France, 2013, http://www.lagazettedescommunes.com/wp-content/uploads/ct69_detc_dspes_guide_planification_BTP.pdf [Google Scholar]
  54. Sispea, Observatoire national des services d'eau et d'assainissement, 2015, https://www.services.eaufrance.fr/donnees/telechargement [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.