Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 13, 2022
Article Number 16
Number of page(s) 12
DOI https://doi.org/10.1051/ijmqe/2022015
Published online 29 November 2022
  1. A. Wald, J. Wolfowitz, Tolerance limits for a normal distribution, Ann. Math. Statist. 17, 208–215 (1946) [CrossRef] [Google Scholar]
  2. G.J. Lieberman, Tables for one-sided statistical tolerance limits, Ind. Qual. Control 14, 7–9 (1958) [Google Scholar]
  3. M.G. Natrella, Experimental Statistics, Handbook 91 (National Bureau of Standards, United States Government Printing Office, Washington, 1963) [CrossRef] [Google Scholar]
  4. I. Guttman, Statistical Tolerance Regions (Hafner Publishing Company, Darien CT, 1970) [Google Scholar]
  5. N.L. Johnson, B.L. Welch, Applications of the noncentral t-distribution, Biometrika 31, 362–389 (1940) [CrossRef] [Google Scholar]
  6. D.B. Owen, D.E. Amos, Programs for computing percentage points of the noncentral t-distribution, Sandia Corporation Monograph No. SCR-551 (Sandia Corporation, Washington, 1963) [Google Scholar]
  7. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1972) [Google Scholar]
  8. C.L. Link, An Equation for One-Sided Tolerance Limits for Normal Distributions, Research Paper FPL F 458 (Forest Products Laboratory, Madison WI, 1985) [Google Scholar]
  9. I. Janiga, I. Garaj, One-sided tolerance factors of normal distributions with unknown mean and variability, Measur. Sci. Rev. 6, 2 (2006) [Google Scholar]
  10. D.S. Young, Normal tolerance interval procedures in the tolerance package, R Journal 8/2 (2016) [Google Scholar]
  11. D.B. Owen, Factors for One-Sided Tolerance Limits and for Variables Sampling Plans, Sandia Corporation Monograph No. SCR-607 (Sandia Corporation, Washington, 1963) [CrossRef] [Google Scholar]
  12. J.T. Wheeler, Statistical Computation of Tolerance Limits, NASA TM-108424 (George C. Marshall Space Flight Center, Huntsville, 1993) [Google Scholar]
  13. D.B. Owen, Control of percentages in both tails of the normal distribution, Technometrics 6, 377–387 (1964) [CrossRef] [Google Scholar]
  14. W.G. Howe, Two-sided tolerance limits for normal populations, some improvements, J. Am. Stat. Assoc. 64, 610–620 (1969) [Google Scholar]
  15. R.E. Odeh, D.B. Owen, Z.W. Birnbaum, L. Fisher, Pocket Book of Statistical Tables (Marcel Dekker Inc., New York, 1977) [Google Scholar]
  16. R.E. Odeh, Tables of two-sided tolerance factors for a normal distribution, Commun. Stat. Simul. Comput. 7, (1978) [Google Scholar]
  17. R.E. Odeh, D.B. Owen, Tables for Normal Tolerance Limits, Sampling Plans, and Screening (Marcel Dekker Inc., New York, 1980) [Google Scholar]
  18. I. Garaj, I. Janiga, Two-sided tolerance limits of normal distributions for unknown mean and variability, Bratislava: Vyd. STU (2002) [Google Scholar]
  19. W.A. Jensen, Approximations of tolerance intervals for normally distributed data, Qual. Reliab. Eng. Int. 25, 571–580 (2009) [CrossRef] [Google Scholar]
  20. K. Krishnamoorthy, T. Mathew, Statistical Tolerance Regions: Theory, Applications, and Computation (John Wiley & Sons Inc., Hoboken, 2009) [Google Scholar]
  21. K. Krishnamoorthy, F. Xie, Tolerance intervals for symmetric location − scale families based on uncensored or censored samples, J. Stat. Plan. Inference 141, 1170–1182 (2011) [CrossRef] [Google Scholar]
  22. V. Witkovsky, On the exact two-sided tolerance intervals for univariate normal distribution and linear regression, Aust. J. Stat. 43/3-4, 279–292 (2014) [CrossRef] [Google Scholar]
  23. D.S. Young, An R package for estimating tolerance intervals, J. Stat. Softw. 36, 1–39 (2010) [CrossRef] [Google Scholar]
  24. ISO 16269-6:2014, Statistical interpretation of data − Part 6: Determination of statistical tolerance intervals (ISO, Geneva, 2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.