Int. J. Metrol. Qual. Eng.
Volume 12, 2021
Topical Issue - Advances in Metrology and Quality Engineering
Article Number 2
Number of page(s) 8
Published online 19 January 2021
  1. D.R. Laughlin, D. Smith, Development and performance of an angular vibration sensor with 1-1000 Hz bandwidth and nanoradian level noise, Free-Space Laser Communication and Laser Imaging, Int. Soc. Opt. Photonics 4489, 208–214 (2002) [Google Scholar]
  2. M. Sohail, Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in stretching cylinder, Phys. A Stat. Mech. Appl. 549, 124088 (2020) [CrossRef] [Google Scholar]
  3. R.V.M.S.S. Kiran Kumar, S. Vijaya Kumar Varma, C.S.K. Raju, S.M. Ibrahim, G. Lorenzini, E. Lorenzini, Retraction Note to: Magnetohydrodynamic 3D slip flow in a suspension of carbon nanotubes over a slendering sheet with heat source/sink, Contin. Mech. Thermodyn. 29, 1–17 (2019) [Google Scholar]
  4. S. Jimenez-Flores, J.G. Pérez-Luna, J.J. Alvarado-Pulido, A.E. Jiménez-González, Development and simulation of a magnetohydrodynamic solar generator operated with NaCl electrolyte solution, J. Solar Energy Eng. 143, 1–9 (2020) [Google Scholar]
  5. C.R. Evans, J.F. Hawley, Simulation of magnetohydrodynamic flows − a constrained transport method, Astrophys. J. 332, 659–677 (2007) [NASA ADS] [CrossRef] [Google Scholar]
  6. H. Alfvén, Magnetohydrodynamic waves in the atomic nucleus, Phys. Rev. 107, 632–632 (1957) [CrossRef] [Google Scholar]
  7. E. Egorov, V. Agafonov, S. Avdyukhina, S. Borisov, Angular molecular-electronic sensor with negative magnetohydrodynamic feedback, Sensors 18, 245 (2018) [CrossRef] [Google Scholar]
  8. M. Anwari, Effect of magnetic field on a Diagonal MHD Accelerator, 2008 IEEE Vehicle Power and Propulsion Conference, IEEE, 2008, pp. 1–5 [Google Scholar]
  9. D.R. Laughlin, Magnetohydrodynamic (MHD) actuator sensor. Google Patents (2007) [Google Scholar]
  10. D. Laughlin, H. Sebesta, D. Eckelkamp-Baker, A dual function magnetohydrodynamic(MHD) device for angular motion measurement and control, Adv. Astronaut. Sci. 111, 335–347 (2002) [Google Scholar]
  11. T. Iwata, Precision on-board orbit model for attitude control of the advanced land observing satellite (ALOS), J. Aerospace Eng. 4, 62–74 (2012) [Google Scholar]
  12. A. El-Osery, S. Bruder, D. Laughlin, High-accuracy heading determination, 2013 8th International Conference on System of Systems Engineering, IEEE, 2013, pp. 308–313 [CrossRef] [Google Scholar]
  13. B. Ando, S. Baglio, A. Beninato, A low-cost inertial sensor based on shaped magnetic fluids, IEEE Trans. Instrum. Meas. 61, 1231–1236 (2012) [CrossRef] [Google Scholar]
  14. H.E. Shimin, T. Liang, High-bandwidth measurement based attitude determination, Aerospace Control Appl. 37, 20–25 (2011) [Google Scholar]
  15. H. Huo, M. Ma, Y. Li, J. Qiu, The application of MHD angular rate sensor in aerospace, Vac. Cryogenics 17, 114–120 (2011) [Google Scholar]
  16. H. Huo, M. Ma, Y. Li, J. Qiu, High precision measurement technology of satellite's angle microvibration, Transducer Microsyst. Technol. 3, 4–6 (2011) [Google Scholar]
  17. M. Xu, X. Li, T. Wu, X. Yu, C. Chen, Structure design and experiment study for MHD gyroscope, Chin. J. Sci. Instrum. 36, 394–400 (2015) [Google Scholar]
  18. Y. Wu, X. Li, F. Liu, G. Xia, An on-orbit dynamic calibration method for an MHD micro-angular vibration sensor using a laser interferometer, Sensors 19, 4291 (2019) [CrossRef] [Google Scholar]
  19. Y. Ji, G. Yan, Y. Du, Low-frequency extension design of angular rate sensor based on magnetohydrodynamics, 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), IEEE, 2020, pp. 182–186 [CrossRef] [Google Scholar]
  20. Y. Ji, M. Xu, X. Li, T. Wu, W. Tuo, J. Wu, J. Dong, Error analysis of magnetohydrodynamic angular rate sensor combing with coriolis effect at low frequency, Sensors 18, 1921 (2018) [CrossRef] [Google Scholar]
  21. Y. Ji, X. Li, T. Wu, J. Wu, Preliminary study on the magnetohydrodynamic (MHD) angular rate sensor combing coriolis effect at low-frequency, 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), IEEE, 2017, pp. 210–214 [CrossRef] [Google Scholar]
  22. R. Moreau, S. Molokov, H.K. Moffatt, Julius Hartmann and his followers: a review on the properties of the Hartmann layer, in: Magnetohydrodynamics, Springer, 2007, pp. 155–170 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.