Open Access
Int. J. Metrol. Qual. Eng.
Volume 7, Number 3, 2016
Article Number 305
Number of page(s) 8
Published online 21 October 2016
  1. E. Poitrat, Biocarburants, Techniques de l'Ingénieur, BE 8, 550v2 (2009) [Google Scholar]
  2. A.L. Hantson, D. Thomas, Enjeux technologiques et écologiques majeurs des biocarburants (Congrès Français de Thermique, STF2010, Le Touquet, 2010) [Google Scholar]
  3. S. Feng, A.L. Graham, P.T. Readon, J. Abbott, L. Mondy, Improving falling ball tests for viscosity determination, J. Fluids Eng. 128, 157–163 (2006) [CrossRef] [Google Scholar]
  4. W.J. Milliken, M. Gottlieb, A.L. Graham, L.A. Mondy, R.L. Powel, The viscosity-volume fraction relation for suspensions of rod-like particles by falling-ball rheometry, J. Fluid Mech. 202, 217–232 (1989) [CrossRef] [Google Scholar]
  5. K. Fujii, Y. Fujita, N. Kuramoto, Y. Kurano, K. Fujii, A study on absolute measurement of viscosity by the falling ball method for a primary viscosity standard: development of velocity measurement system for the falling ball, Thermophys. Prop. 26, 430–432 (2005), ISSN: 0911-1743 [Google Scholar]
  6. Y. Fujita, N. Kuramoto, Y. Kurano, K. Fujii, A new project at NMIJ for an absolute measurement of the viscosity by the falling ball method, in 14th international conference on the properties of water and steam in Kyoto (2004) [Google Scholar]
  7. Y. Fujita, Progress of the absolute measurements of viscosity (CCM Working Group on Viscosity, BIPM, Sèvres, 2011) [Google Scholar]
  8. P. Ballereau, P. Pinot, T. Madec, M. Megharfi, Report on last improvements on falling ball viscometer (CCM Working Group on Viscosity, BIPM, Sèvres, 2011) [Google Scholar]
  9. M. Brizard, Développement et étude d'un viscosimètre absolu à chute de bille, thèse de doctorat, 2005 [Google Scholar]
  10. P. Ballereau, E. Mahé, P. Pinot, T. Madec, Density and viscosity of pure RME (rapeseed oil methyl ester) and SME (soybean oil methyl ester) at normal pressure, in ENG09-Biofuel, annual meeting, Helsinki, January 31st (2011) [Google Scholar]
  11. T. Bohlin, On the drag on a rigid sphere moving in a viscous liquid inside a cylindrical tube, Trans. R. Inst. Tech. (Stockholm) 155, 1–63 (1960) [Google Scholar]
  12. S. Candel, Mécanique des fluides (éditeur Dunod, Paris, 1991) [Google Scholar]
  13. P. Chassaing, Mécanique des fluides, éléments d'un premier parcourt (Cépadues-éditions, Toulouse, 2000), deuxième édition [Google Scholar]
  14. I.L. Ryhming, Dynamique des fluids (Presses polytechniques universitaires romandes, Lausanne, 1991), deuxième édition [Google Scholar]
  15. H. Ha Minh, Les équations de Navier–Stokes : propriétés et application, 30ème colloque d'aérodynamique appliquée (École centrale de Nantes, Nantes, 1993) [Google Scholar]
  16. P.-L. Violet, Mécanique des fluides à masse volumique variable (éditeur Presses Pont et Chaussées, Paris, 1997) [Google Scholar]
  17. J. Padet, Fluides en écoulement, méthodes et modèles (Editeur Masson, Paris, 1991) [Google Scholar]
  18. G.G. Stokes, On the effect of the internal friction of fluids on the motion of a pendulum, Trans. Camb. Philos. Soc. 9, 8–106 (1851) [Google Scholar]
  19. H. Schlichting, Boundary-layer theory (McGraw-Hill, New York, 1979), 7th ed. [Google Scholar]
  20. P.L. Viollet, J.-M. Chabard, P. Esposito, D. Laurence, Mécanique des fluides appliquées (éditeur Presses Ponts et Chaussées, Paris, 1997) [Google Scholar]
  21. E. Guyon, J-P. Hulin, L. Petit, Hydrodynamique physique (Editions du CNRS, Meudon, 1991) [Google Scholar]
  22. S.J. Liao, An analytic approximation of the drag coefficient for the viscous flow past a sphere, Int. J. Non-Linear Mech. 37, 1–18 (2002) [CrossRef] [Google Scholar]
  23. E.A. Brun, A. Martinot-Lagarde, J. Mathieu, Mécanique des fluides (Dunod, Paris, 1968), tome 1 [Google Scholar]
  24. P. Bidault, Préhension en robotique, Automatique-Robotique, Techniques de l'Ingénieur S7765 (2003) [Google Scholar]
  25. R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow and Applied Rheology (Elsevier, Oxford, 2008), 2nd ed. [Google Scholar]
  26. M. Gottlieb, Zero-shear-rate viscosity measurements for polymer solutions by falling ball viscometry, J. Non-Newtonian Fluid Mech. 6, 97–109 (1979) [CrossRef] [Google Scholar]
  27. V. Subbaraman, R.A. Mashelkar, J. Ulbrecht, Extrapolation procedures for zero shear viscosity with a falling sphere viscometer, Rheol. Acta 10, 429–433 (1971) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.