Open Access
Int. J. Metrol. Qual. Eng.
Volume 7, Number 1, 2016
Article Number 104
Number of page(s) 7
Published online 12 April 2016
  1. J.R. Wertz, Spacecraft attitude determination and control (Kluwer Academic Publishers, Dordrecht, Holland, 1988) [Google Scholar]
  2. R. Alonso, M.D. Shuster, Two steps: A fast robust algorithm for attitude- independent magnetometer-bias determination, J. Astronautical Sci. 50, 433–451 (2002) [Google Scholar]
  3. R. Alonso, M.D. Shuster, Attitude-independent magnetometer-bias determination: A survey, J. Astronautical Sci. 50, 453–475 (2002) [Google Scholar]
  4. M.D. Shuster, R. Alonso, Magnetometer calibration for the first Argentine spacecraft, Adv. Astronautical Sci. 91, 29–46 (1996) [Google Scholar]
  5. R. Alonso, M.D. Shuster, Centering and observability in attitude-independent magnetometer-bias determination, J. Astronautical Sci. 51, 133–141 (2003) [Google Scholar]
  6. R. Alonso, M.D. Shuster, Complete linear attitude-independent magnetometer calibration, J. Astronautical Sci. 50, 477–490 (2002) [Google Scholar]
  7. E. Kim, H. Bang, Bias estimation of magnetometer using genetic algorithm, in Proc. Int. Conf. Control Automation and System 2007, Seoul, Korea, 2007, pp. 195–198 [Google Scholar]
  8. J.L. Crassidis, K. Lai, R.R. Harman, Real-time attitude-independent three-axis magnetometer calibration, J. Guidance Control Dynamics 28, 115–120 (2005) [Google Scholar]
  9. L. Huang, W. Jing, Attitude-independent geomagnetic navigation using onboard complete three-axis magnetometer calibration, in Proc. 2008 IEEE Aerospace Conference, Montana, USA, 2008, pp. 1–7 [Google Scholar]
  10. W. H. Steyn, A Multi-mode Attitude Detarmination and Control System for Small Satellites, Ph.D. dissertation, University of Stellenbosch, South Africa, 1995 [Google Scholar]
  11. R. DaForno et al., Autonomous navigation of megSat 1: Attitude, sensor bias and scale factor estimation by EKF and magnetometer-only measurement, in Proc. 22nd AIAA International Communications Satellite Systems Conference and Exhibit, California, USA, 2004 [Google Scholar]
  12. G.F. Ma, X.Y. Jiang, Unscented Kalman filter for spacecraft attitude estimation and calibration using magnetometer measurements, in Proc. 4th International Conference on Machine Learning and Cybernetics, Guangzhou, China, 2005, pp. 506–511 [Google Scholar]
  13. C. Hajiyev, Orbital Calibration of microsatellite magnetometers using a linear Kalman filter, Measurement Techniques 58, 1037–1043. DOI: 10.1007/s11018-015-0838-4 [Google Scholar]
  14. P. Sekhavat, Q. Gong, I.M. Ross, NPSAT I parameter estimation using unscented Kalman filter, in Proceedings of 2007 American Control Conference (IEEE, New York, USA, 2007), pp. 4445–4451 [Google Scholar]
  15. T. Inamori, N. Sako, Sh. Nakasuka, Strategy of magnetometer calibration for nano-satellite missions and in-orbit performance. AIAA Guidance, Navigation, and Control Conference, 2–5 August 2010, Toronto, Ontario Canada, pp. 1–13 [Google Scholar]
  16. R.E. Kalman, A new approach to linear filtering and prediciton problems, ASME J. Basic Eng. 35–45 (1960) [Google Scholar]
  17. C. Hajiyev, F. Caliskan, Fault diagnosis and reconfiguration in flight control systems (Kluwer Academic Publishers, Boston, USA, 2003) [Google Scholar]
  18. R.K. Mehra, J. Peschon, An innovations approach to fault detection and diagnosis in dynamic systems, Automatica 7, 637–640 (1971) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.