Open Access
Int. J. Metrol. Qual. Eng.
Volume 6, Number 4, 2015
Article Number 401
Number of page(s) 18
Published online 16 November 2015
  1. M. Kano, Y. Nakagawa, Data-based process monitoring, process control and quality improvement: Recent developments and applications in steel industry, Comput. Chem. Eng. 32, 12–24 (2008) [CrossRef] [Google Scholar]
  2. K. Yang, J. Trewn, Multivariate Statistical Methods in Quality Management (McGraw-Hill, New York, 2004) [Google Scholar]
  3. A. Nachev, B. Stoyanov, Product quality analysis using Support Vector Machines. Information Models and Analyses 1, 179–192 (2012) [Google Scholar]
  4. L. Rokach, O. Maimon, Data mining for improving the quality of manufacturing: a feature set decomposition approach, J. Intell. Manufact. 17, 285–299 (2006) [CrossRef] [Google Scholar]
  5. G. Köksal, I. Batmaz, M.C. Testik, A review of data mining applications for quality improvement in manufacturing industry, Expert Syst. Appl. 38, 13448–13467 (2011) [Google Scholar]
  6. C.P. Wei, S. Piramuthu, M.J. Shaw, Knowledge discovery and data mining. In Handbook on Knowledge Management, edited by C.W. Holsapple (Springer-Verlag, Berlin, 2003), Vol. 2, pp. 157–189 [Google Scholar]
  7. A.K. Choudhary, J.A. Harding, M.K. Tiwari, Data mining in manufacturing: A review based on the kind of knowledge, J. Intell. Manufact. (2008) [Google Scholar]
  8. M.S. Phadke, Quality Engineering using Robust Design (Prentice-Hall, Englewood Cliffs, NJ, 1989) [Google Scholar]
  9. A. Berson, K. Thearling, J. Stephen, Building Data Mining Applications for CRM (USA, McGraw-Hill, 1999) [Google Scholar]
  10. W. Frawley, G. Piatetsky-Shapiro, C. Matheus, Knowledge Discovery in Databases: An Overview, AI Magazine (1992), pp. 213–228 [Google Scholar]
  11. U.M. Fayyad, G. Pitatesky-Shapiro, P. Smyth, R. Uthurasamy, Advances in Knowledge Discovery and Data Mining (AAAI/MIT Press, 1996) [Google Scholar]
  12. M. Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms (John Wiley & Sons, 2011) [Google Scholar]
  13. F. Gorunescu, Data mining (Springer-Verlag Berlin An, 2013) [Google Scholar]
  14. C. Romero, S. Ventura, Data Mining in Education, Wiley Interdiscipl. Rev.: Data Mining Knowl. Discovery 3, 12–27 (2013) [CrossRef] [Google Scholar]
  15. D.T. Larose, Discovering Knowledge in Data: an Introduction to Data Mining (John Wiley & Sons, 2014) [Google Scholar]
  16. C. McCue, Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis (Butterworth-Heinemann, 2015) [Google Scholar]
  17. D. Montgomery, C. Peck, A. Elizabeth, V.G. Geoffrey, Introduction to Linear Regression Analysis (John Wiley & Sons, Inc., New York, 2001) [Google Scholar]
  18. Harrell, Jr., E. Frank, Regression Modeling Strategies: with Applications to Linear Models, Logistic Regression, and Survival Analysis (Springer-Verlag, New York, 2001) [Google Scholar]
  19. N. Mastrogiannis, B. Boutsinas, I. Giannikos, A method for improving the accuracy of data mining classification algorithms, Comput. Oper. Res. 36, 2829–2839 (2009) [CrossRef] [Google Scholar]
  20. A. Chemchem, H. Drias, From data mining to knowledge mining: Application to intelligent agents, Expert Syst. Appl. 42, 1436–1445 (2015) [CrossRef] [Google Scholar]
  21. P. Berkhin, A Survey of Clustering Data Mining Techniques. Grouping Multidimensional Data (2006) 25–71 [Google Scholar]
  22. N. Padhy, D. Mishra, R. Panigrahi, The survey of data mining applications and feature scope, arXiv:1211.5723 (2012) [Google Scholar]
  23. S.L. Ting, Y.K. Tse, G.T.S. Ho, S.H. Chung, G. Pang, Mining logistics data to assure the quality in a sustainable food supply chain: A case in the red wine industry. Int. J. Prod. Econ. 152, 200–209 (2014) [CrossRef] [Google Scholar]
  24. M. Gardner, J. Bieker, Data mining solves tough semiconductor manufacturing problems. In S.J. Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining, KDD 2000 (ACM, Boston, New York, 2000), pp. 376–383 [Google Scholar]
  25. M.A. Karim, S. Halgamuge, A.J.R. Smith, A.L. Hsu, Manufacturing yield improvement by clustering. In Neural information processing: 13th international conference proceedings Part III, edited by I. King et al., 3–6 October 2006, Hong Kong, China. In LNCS (Springer, Berlin, 2006), Vol. 4234, pp. 526–534 [Google Scholar]
  26. C. Huang, T. Li, T. Peng, Attribute selection based on rough set theory for electromagnetic interference (EMI) fault diagnosis, Quality Eng. 18, 161–171 (2006) [CrossRef] [Google Scholar]
  27. C.W. Liu, C.F. Chien, An intelligent system for wafer bin map defect diagnosis: An empirical study for semiconductor manufacturing, Eng. Appl. Artif. Intell. 26, 1479–1486 (2013) [CrossRef] [Google Scholar]
  28. C.F. Chien, S.C. Hsub, Y.J. Chen, A system for online detection and classification of wafer bin map defect patterns for manufacturing intelligence, Int. J. Prod. Res. 51, 2324–2338 (2013) [CrossRef] [Google Scholar]
  29. De N. Abajo, A.B. Diez, V. Lobato, S.R. Cuesta, ANN quality diagnostic models for packaging manufacturing: an industrial data mining case study. In KDD-2004: Proc. of the tenth ACM SIGKDD int. Conf. on Knowledge Discovery and Data Mining, 22–25 August 2004, Seattle Washington, edited by R. Kohavi et al. (ACM Press, New York, 2004), pp. 799–804 [Google Scholar]
  30. D.S. Chang, S.T. Jiang, Assessing quality performance based on the online sensor measurements using neural networks, Comput. Ind. Eng. 42, 417–424 (2002) [CrossRef] [Google Scholar]
  31. W.C. Chen, A.H.I. Lee, W.J. Deng, K.Y. Liu, The implementation of neural network for semiconductor PECVD process, Expert Syst. Appl. 32, 1148–1153 (2007) [CrossRef] [Google Scholar]
  32. T. Yang, T. Tsai, J. Yeh, A neural network-based prediction model for fine pitch stencil printing quality in surface mount assembly, Eng. Appl. Artif. Intell. 18, 335–341 (2005) [CrossRef] [Google Scholar]
  33. X. Shi, P. Schillings, D. Boyd, Applying artificial neural networks and virtual experimental design to quality improvement of two industrial processes, Int. J. Prod. Res. 42, 101–118 (2004) [CrossRef] [Google Scholar]
  34. H.Y. Tseng, Welding parameters optimization for economics design using neural approximation and genetic algorithm, Int. J. Adv. Manufact. Technol. 27, 897–901 (2006) [CrossRef] [Google Scholar]
  35. B.S. Sung, I.S. Kim, Y. Xue, H.H. Kim, Y.H. Cha, Fuzzy regression model to predict the bead geometry in the robotic welding process, ACTA Metall. Sinica 20, 391–397 (2007) [CrossRef] [Google Scholar]
  36. B. Ozcelik, T. Erzurumlu, Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm, J. Mater. Process. Technol. 171, 437–445 (2006) [Google Scholar]
  37. C. Shen, L. Wang, Q. Li, Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method, J. Mater. Process. Technol. 183, 412–418 (2007) [CrossRef] [Google Scholar]
  38. S. Guessasma, Z. Salhi, G. Montavon, P. Gougeon, C. Coddet, Artificial intelligence implementation in the APS process diagnostic, Mater. Sci. Eng. B 110, 285–295 (2004) [CrossRef] [Google Scholar]
  39. P.C. Austina, J.V. Tua, J.E. Hoe, D. Levye, D.S. Lee, 2013. Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes, J. Clin. Epidemiol. 66, 398–407 (2013) [CrossRef] [PubMed] [Google Scholar]
  40. K. Wang, S. Tong, B. Eynard, L. Roucoules, N. Matta, Review on application of data mining in product design and manufacturing. In Proc. of the fourth Int. Conf. on Fuzzy Systems and Knowledge Discovery (FSKD 2007), 24–27 August, Haikou Hainan, China, edited by J. Lei, J. Yu, S. Zhou (IEEE, 2007), pp. 613–618 [Google Scholar]
  41. T.H. Hou, W.L. Liu, L. Lin, Intelligent remote monitoring and diagnosis of manufacturing processes using an integrated approach of neural networks and rough sets. J. Intell. Manufact. 14, 235–239 (2003) [Google Scholar]
  42. H. Huang, D. Wu, 2005. Product quality improvement analysis using data mining: A case study in ultra-precision manufacturing industry. In Proc. of the Second Int. Conference on Fuzzy Systems and Knowledge Discovery, 22–29 August 2005, Changsha, China, edited by L. Wang, Y. Jin, FSKD 2005. In Lecture notes in computer science (Springer, Berlin, 2005), Vol. 3614, pp. 577–580 [Google Scholar]
  43. G.T. Jemwa, C. Aldrich, Improving process operations using support vector machines and decision trees, AICHE J. 51, 526–543 (2005) [CrossRef] [Google Scholar]
  44. H. Sarimveis, P. Doganis, A. Alexandridis, A classification technique based on radial basis function neural networks, Adv. Eng. Software37, 218–221 (2006) [Google Scholar]
  45. Y.H. Hung, Optimal process parameters design for a wire bonding of ultrathin CSP package based on hybrid methods of artificial intelligence, Microelectron. Int. 24, 3–10 (2007) [CrossRef] [Google Scholar]
  46. M. Hamedi, M. Shariatpanahi, A. Mansourzadeh, Optimizing spot welding parameters in a sheet metal assembly by neural networks and genetic algorithm, Proc. Instit. Mech. Eng. Part B J. Eng. Manufact. 221, 1175–1184 (2007) [CrossRef] [Google Scholar]
  47. V. Nedic, S. Cvetanovic, D. Despotovic, M. Despotovic, S. Babic, Data mining with various optimization methods, Expert Syst. Appl. 41, 3993–3999 (2014) [CrossRef] [Google Scholar]
  48. T.L. Chiang, C.T. Su, T.S. Li, R.C.C. Huang, Improvement of process capability through neural networks and robust design: A case study, Quality Eng. 14, 313–318 (2002) [CrossRef] [Google Scholar]
  49. G.T.S. Ho, H.C.W. Lau, C.K.M. Lee, A.W.H. Ip, K.F. Pun, 2006. An intelligent production workflow mining system for continual quality enhancement, Intell. J. Adv. Manufact. Technol. 28, 792–809 (2006) [CrossRef] [Google Scholar]
  50. K. Manimala, K. Selvi, R. Ahila, Optimization techniques for improving power quality data mining using wavelet packet based support vector machine, Neurocomputing 77, 36–47 (2012) [CrossRef] [Google Scholar]
  51. B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers. In 5th Annual ACM Workshop on COLT, edited by D. Haussler (Pittsburgh, PA. ACM Press, 1992), pp. 144–152 [Google Scholar]
  52. B. Scholkopf, K. Tsuda, J.P. Vert, Kernel Methods in MIT Press series on Computational Molecular Biology (MIT Press, 2004) [Google Scholar]
  53. N. Cristianini, J. Shawe-Taylor, An introduction to support vector machines: And other kernel-based learning methods (Cambridge University Press, 2000) [Google Scholar]
  54. J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis (Cambridge UP, Cambridge, UK, 2004) [Google Scholar]
  55. B. Scholkopf, A. Smola, Learning with Kernels (MIT Press, Cambridge, MA, 2002) [Google Scholar]
  56. A. Ben-Hur, J. Weston, A User’s Guide to Support Vector Machines, Technical report, (2012) [Google Scholar]
  57. C. Cortes, V. Vapnik, Support vector networks, Machine Learning 20, 273–297 (1995) [Google Scholar]
  58. N. Pooyan, M. Shahbazian, K. salahshoor, M. Hadian, Simultaneous fault diagnosis using multi class support vector machine in a Dew point process, J. Natural Gas Sci. Eng. 23, 373–379 (2015) [CrossRef] [Google Scholar]
  59. S. Li, H. Wu, D. Wan, J. Zhu, An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine, Knowledge-Based Systems 24, 40–48 (2011) [CrossRef] [Google Scholar]
  60. G. Orrù, W. Pettersson-Yeo, A.F. Marquand, G. Sartori, A. Mechelli, Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review, Neurosci. Biobehav. Rev. 36, 1140–1152 (2012) [CrossRef] [PubMed] [Google Scholar]
  61. B. Pradhan, A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS, Comput. Geosci. 51, 350–365 (2013) [Google Scholar]
  62. J. John, K.V. Pramod, K. Balakrishnan, Unconstrained handwritten Malayalam character recognition using wavelet transform and support vector machine classifier, Procedia Eng. 30, 598–605 (2012). [CrossRef] [Google Scholar]
  63. J.A. Nasiri, N.M. Charkari, S. Jalili, Least squares twin multi-class classification support vector machine, Pattern Recognition 48, 984–992 (2015) [CrossRef] [Google Scholar]
  64. J. Taboada, J.M. Matías, C. Ordnó˜ez, P.J. García, Creating a quality map of a slate deposit using support vector machines, J. Comput. Appl. Math. 204, 84–94 (2007) [CrossRef] [Google Scholar]
  65. S. Lo, Web service quality control based on text mining using support vector machine, Expert Syst. Appl. 4, 603–610 (2008) [CrossRef] [Google Scholar]
  66. Z. Moravej, S.A. Banihashemi, M.H. Velayati, Power quality events classification and recognition using a novel support vector algorithm, Energy Convers. Manag. 50, 3071–3077 (2009) [CrossRef] [Google Scholar]
  67. P.H. Chou, M.J. Wua, K.K. Chen, Integrating support vector machine and genetic algorithm to implement dynamic wafer quality prediction system, Expert Syst. Appl. 37, 4413–4424 (2010) [CrossRef] [Google Scholar]
  68. K.P. Singh, N. Basant, S. Gupta, Support vector machines in water quality management, Anal. Chim. Acta 703, 152–162 (2011) [CrossRef] [PubMed] [Google Scholar]
  69. L.M.R. Baccarini, V.V.R. Silva, B.R. Menezes, W.M. Caminhas, SVM practical industrial application for mechanical faults diagnostic, Expert Syst. Appl. 38, 6980–6984 (2011) [CrossRef] [Google Scholar]
  70. A. Widodo, B.S. Yang, Machine health prognostics using survival probability and support vector machine, Expert Syst. Appl. 38, 8430–8437 (2011) [CrossRef] [Google Scholar]
  71. J. Cui, Y. Wang, A novel approach of analog circuit fault diagnosis using support vector machines classifier, Measurement 44, 281–289 (2011) [CrossRef] [Google Scholar]
  72. M. Saimurugan, K.I. Ramachandran, V. Sugumaran, N.R. Sakthivel, Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine, Expert Syst. Appl. 38, 3819–3826 (2011) [CrossRef] [Google Scholar]
  73. Q. Wu, Car assembly line fault diagnosis model based on triangular fuzzy Gaussian wavelet kernel support vector classifier machine and genetic algorithm, Expert Syst. Appl. 38, 14812–14818 (2011) [CrossRef] [Google Scholar]
  74. Q. Wu, Z. Ni, Car assembly line fault diagnosis based on triangular fuzzy support vector classifier machine and particle swarm optimization, Expert Syst. Appl. 38, 4727–4733 (2011) [CrossRef] [Google Scholar]
  75. Q. Wu, R. Law, S. Wu, Fault diagnosis of car assembly line based on fuzzy wavelet kernel support vector classifier machine and modified genetic algorithm, Expert Syst. Appl. 38, 9096–9104 (2011) [CrossRef] [Google Scholar]
  76. Q. Wu, Hybrid fuzzy support vector classifier machine and modified genetic algorithm for automatic car assembly fault diagnosis, Expert Syst. Appl. 38, 1457–1463 (2011) [CrossRef] [Google Scholar]
  77. K.C. Gryllias, I.A. Antoniadis, A Support Vector Machine approach based on physical model training for rolling element bearing fault detection in industrial environments, Eng. Appl. Artif. Intell. 25, 326–344 (2012) [CrossRef] [Google Scholar]
  78. S. Ekici, Support Vector Machines for classification and locating faults on transmission lines, Appl. Soft Comput. 12, 1650–1658 (2012) [CrossRef] [Google Scholar]
  79. S.B. Salem, K. Bacha, A. Chaari, Support vector machine based decision for mechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform, ISA Trans. 51, 566–572 (2012) [CrossRef] [PubMed] [Google Scholar]
  80. P. Zhu, Q. Hu, Rule extraction from support vector machines based on consistent region covering reduction, Knowledge-Based Syst. 42, 1–8 (2013) [CrossRef] [Google Scholar]
  81. S. Shokri, M.T. Sadeghi, M.A. Marvast, High reliability estimation of product quality using support vector regression and hybrid meta-heuristic algorithms, J. Taiwan Instit. Chem. Eng. 45, 2225–2232 (2014) [CrossRef] [Google Scholar]
  82. S. Maldonado, J. Pérez, R. Weber, M. Labbé, Feature selection for support vector machines via mixed integer linear programming, information Sci. 279, 163–175 (2014) [CrossRef] [Google Scholar]
  83. L. Saidi, Ben J. Ali, F. Fnaiech, Application of higher order spectral features and support vector machines for bearing faults classification, ISA Transactions. Article in press. DOI: 10.1016/j.isatra.2014.08.007 (2014) [Google Scholar]
  84. G. Yin, Y.T. Zhang, Z.N. Li, G.Q. Ren, H.B. Fan, Online fault diagnosis method based on incremental support vector data description and extreme learning machine with incremental output structure, Neurocomputing 128 224–231 (2014a) [CrossRef] [Google Scholar]
  85. D. Fernández-Francos, D. Martínez-Rego, O. Fontenla-Romero, A. Alonso-Betanzos, Automatic bearing fault diagnosis based on one-class v-SVM, Comput. Ind. Eng. 64, 357–365 (2013) [CrossRef] [Google Scholar]
  86. S. Yin, X. Zhu, C. Jing, Fault detection based on a robust one class support vector machine, Neurocomputing 145, 263–268 (2014b) [CrossRef] [Google Scholar]
  87. A.K. Marnerides, S. Malinowski, R. Morla, H.S. Kim, Fault diagnosis in DSL networks using support vector machines, Comput. Commun. DOI: 10.1016/j.comcom.2015.01.006 (2015) [Google Scholar]
  88. D. Tomar, S. Agarwal, A comparison on multi-class classification methods based on least squares twin support vector machine, Knowledge-Based Systems. DOI: 10.1016/j.knosys.2015.02.009 (2015) [Google Scholar]
  89. R. Jegadeeshwaran, V. Sugumaran, Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines, Mech. Syst. Signal Process. 52-53, 436–446 (2015) [CrossRef] [Google Scholar]
  90. M. Fu, Y. Tian, F. Wu, Step-wise support vector machines for classification of overlapping samples, Neurocomputing 155, 159–166 (2015) [CrossRef] [Google Scholar]
  91. Y. Tian, M. Fu, F. Wu, Steel plates fault diagnosis on the basis of support vector machines, Neurocomputing 151, 296–303 (2015) [CrossRef] [Google Scholar]
  92. N. Couellan, S. Jan, T. Jorquera, J.P. Georgé, Self-adaptive Support Vector Machine: A multi-agent optimization perspective, Expert Syst. Appl. 42, 4284–4298 (2015) [CrossRef] [Google Scholar]
  93. S. Abe, Fuzzy support vector machines for multi-label classification, Pattern Recognition DOI: 10.1016/j.patcog.2015.01.009 (2015) [Google Scholar]
  94. D. Liu, H. Qian, G. Dai, Z. Zhang, An iterative SVM approach to feature selection and classification in high-dimensional datasets, Pattern Recogn. 46, 2531–2537 (2013) [CrossRef] [Google Scholar]
  95. H. Fei, X. Jinwu, L. Min, Y. Jianhong, Product quality modelling and prediction based on wavelet relevance vector machines, Chemometrics and Intelligent Laboratory Systems 121, 33–41 (2013) [CrossRef] [Google Scholar]
  96. F. Chen, B. Tang, R. Chen, A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm, Measurement 46, 220–232 (2013) [CrossRef] [Google Scholar]
  97. S. Bansal, S. Sahoo, R. Tiwari, D.J. Bordoloi, Multiclass fault diagnosis in gears using support vector machine algorithms based on frequency domain data, Measurement 46, 3469–3481 (2013) [CrossRef] [Google Scholar]
  98. X. Zhang, J. Zhou, Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines, Mech. Syst. Signal Process. 41, 127–140 (2013) [Google Scholar]
  99. P. Xanthopoulos, T. Razzaghi, A weighted support vector machine method for control chart pattern recognition, Comput. Ind. Eng. 70, 134–149 (2014) [CrossRef] [Google Scholar]
  100. H.L. Chen, B. Yang, S.J. Wang, G. Wang, D.Y. Liu, H.Z. Li, W.B. Liu, Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy, Appl. Math. Comput. 239, 180–197 (2014) [CrossRef] [Google Scholar]
  101. X. Yang, L. Tan, L. He, A robust least squares support vector machine for regression and classification with noise, Neurocomputing 140, 41–52 (2014) [CrossRef] [Google Scholar]
  102. Y. Zhang, P. Zhang, Machine training and parameter settings with social emotional optimization algorithm for support vector machine, Pattern Recognition Lett. 54, 36–42 (2015) [CrossRef] [Google Scholar]
  103. P. Cheeseman, On Finding the Most Probable Model. In Computational Models of Scientific Discovery and Theory Formation, edited by J. Shrager, P. Langley (San Francisco, Calif.: Morgan Kaufmann, 1990), pp. 73–95 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.