Open Access
Issue
Int. J. Metrol. Qual. Eng.
Volume 2, Number 2, 2011
Page(s) 101 - 119
DOI https://doi.org/10.1051/ijmqe/2011105
Published online 10 January 2012
  1. C.M. Sutton, M.P. Fitzgerald, W. Giardini, A Method of analysis for cross-floats between pressure balances, Metrologia 42, S212–S215 (2005) [CrossRef] [Google Scholar]
  2. B. Blagojevic, I. Bajsic, Determination of the Effective Area of a Gas-Pressure Balance for Low Pressures, in XVII IMEKO World Congress, edited by K. Havrilla (2003) [Google Scholar]
  3. R.S. Dadson, S.L. Lewis, G.N. Peggs, The Pressure Balance: Theory and Practice (HMSO, London, 1982) [Google Scholar]
  4. A.B. Forbes, P.M. Harris, Estimation algorithms in the calculation of effective area of pressure balances, Metrologia 36, 689–692 (1999) [CrossRef] [Google Scholar]
  5. J.W. Wilkinson, Exact Expressions for the Covariances Between Products of Randoms Variables, Technical report ORNL-TM-1977, Oak Ridge National Laboratory, Atomic Energy Commission, USA, 1967 [Google Scholar]
  6. BIPM, IEC, IFCC, ISO, IUPAC, OIML, Guide to the Expression of Uncertainty in Measurement, 2nd edn., BIPM (1995), ISBN 92-67-10188-9 [Google Scholar]
  7. B. Efron, G. Gong, A Leisurely look at the bootstrap, the Jackknife, and cross-validation, Am. Stat. 37, 36–48 (1983) [CrossRef] [Google Scholar]
  8. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, 2007) [Google Scholar]
  9. M.G. Cox, B.R.L. Siebert, The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty, Metrologia 43, S178–S188 (2006) [CrossRef] [Google Scholar]
  10. V. Ramnath, Comparison of the GUM and Monte Carlo measurement uncertainty techniques with application to effective area determination in pressure standards, Int. J. Metrol. Qual. Eng. 1, 51–57 (2010) [CrossRef] [EDP Sciences] [Google Scholar]
  11. D. Zvizdic, L.G. Bermanec, G. Bonnier, E. Renaot, Uncertainty Budget of Pressure Balance Effective Area Determined by Comparison Method, in XVII IMEKO World Congress (2003) [Google Scholar]
  12. A. Picard, R.S. Davis, M. Glaser, K. Fujii, Revised formula for the density of moist air (CIPM-2007), Metrologia 45, 149–155 (2007) [CrossRef] [Google Scholar]
  13. E.C. Morris, K.M.K. Fen, The Calibration of Weights and Balances, Monograph 4: NML Technology Transfer Series, 3rd edn. (CSIRO National Measurement Laboratory, 2003) [Google Scholar]
  14. D. Tabor, Gases, Liquids and Solids, 2nd edn. (Cambridge University Press, 1985) [Google Scholar]
  15. P.J. Mohr, B.N. Taylor, D.B. Newell, CODATA recommended values of the fundamental physical constants: 2006, Rev. Mod. Phys. 80 (2008) [Google Scholar]
  16. I. Kocas, Technical Protocol of EURAMET.M.P-K13 (500 MPa), Technical report, TUBITAK UME, 2009 [Google Scholar]
  17. M.G. Cox, P.M. Harris, Software Support for Metrology Best Practice Guide No. 6 – Uncertainty Evaluation, Technical report, NPL, UK, 2004 [Google Scholar]
  18. B.R.L. Siebert, P. Ciarlini, D. Sibold, Monte Carlo Study on Logical and Statistical Correlation, in VII IMEKO World Congress, edited by P. Ciarlini, E. Filipe, A.B. Forbes, F. Pavese, C. Perruchet, B.R.L. Siebert (2005) [Google Scholar]
  19. M. Krystek, M. Anton, A least-squares algorithm for fitting data points with mutually correlated coordinates to a straight line, Meas. Sci. Technol. 22, 1–9 (2011) [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. P. Penfield, Principle of Maximum Entropy, in Information, Entropy and Computation (2010), www.mit.edu, http://www.mtl.mit.edu/Courses/6.050/2010/notes/chapter9.pdf [Google Scholar]
  21. S. Lewis, G. Peggs, The Pressure Balance: A Practical Guide to its Use, 2nd edn. (HMSO, London, 1992), ISBN 0114800618 [Google Scholar]
  22. W. Schelter, Maxima – A Computer Algebra System (Version 5.23.2) (Free Software Foundation, 2011), http://maxima.sourceforge.net/ [Google Scholar]
  23. J.W. Eaton, GNU Octave Manual, Network Theory Limited (2002), ISBN 0-9541617-2-6, www.gnu.org/software/octave [Google Scholar]
  24. J.E. Shigley, C.R. Mischke, Mechanical Engineering Design, 6th edn. (Metric Edition, McGraw-Hill, 2003) [Google Scholar]
  25. S. Dogra, S. Yadav, A.K. Bandyopadhyay, Computer simulation of a 1.0 GPa piston-cylinder assembly using finite element analysis (FEA), Measurement 43, 1345–1354 (2010) [CrossRef] [Google Scholar]
  26. A.K. Bandyopadhyay, D.A. Olson, Characterization of a compact 200 MPa controlled clearance piston gauge as a primary pressure standard using the heydemann and welch method, Metrologia 43, 573–582 (2006) [CrossRef] [Google Scholar]
  27. P.L.M. Heydemann, B.E. Welch, Piston Gauges, in Experimental Thermodynamics, Experimental Thermodynamics of Non-Reacting Fluids, edited by B. Le Neindre, B. Vodar (Butterworth and Co., 1975), Chap. 4, pp. 147–202 [Google Scholar]
  28. F.M. White, Viscous Fluid Flow, 2nd edn. (McGraw-Hill, 1991) [Google Scholar]
  29. JCGM/WG1, Evaluation of Measurement Data – Supplement 1 to the Guide to the Expression of Uncertainty in Measurement – Propagation of Distributions using a Monte Carlo Method, 1st edn., Joint Committee for Guides in Metrology (2007) [Google Scholar]
  30. C. Elster, B. Toman, Bayesian uncertainty analysis for a regression model versus application of GUM supplement 1 to the least-squares estimate, Metrologia 48, 233–240 (2011) [CrossRef] [Google Scholar]
  31. A.B. Forbes, Nonlinear Least Squares and Baysesian Inference, in Advanced Mathematical and Computational Tools in Metrology and Testing, edited by F. Pavese, M. Bar, A.B. Forbes, J.M. Linares, C. Perruchet, N.F. Zhang (World Scientific Publishing Company, 2009), pp. 104–112 [Google Scholar]
  32. M.G. Cox, P.M. Harris, Software Specifications for Uncertainty Evaluation, Technical report, NPL, UK, 2006 [Google Scholar]
  33. W. Bich, Uncertainty Evaluation by Means of a Monte Carlo Approach, in BIPM Workshop 2 on CCRI (II) Activity Uncertainties and Comparisons (2008), www.bipm.org, http://www.bipm.org/wg/CCRI–%"28II–%"29/WORKSHOP–%"28II–%"29/Allowed/2/Bich.pdf [Google Scholar]
  34. R.L. Burden, J.D. Faires, Numerical Analysis (Brooks/Cole, 2001), ISBN 0-534-38216-9 [Google Scholar]
  35. M. Krystek, M. Anton, A weighted total least-squares algorithm for fitting a straight line, Meas. Sci. Technol. 18, 3438–3442 (2007) [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  36. M. Krystek, M. Anton, Weighted total least squares for mutually correlated coordinates (2011), www.mathworks.com [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.