Issue |
Int. J. Metrol. Qual. Eng.
Volume 11, 2020
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/ijmqe/2020006 | |
Published online | 15 October 2020 |
Research Article
Developing the NIS solid density hydrostatic weighing system up to 20 kg
1
National Institute of Standards, Mass, Density and Pressure Laboratory, Giza, Egypt
2
Al-Azhar University, Faculty of Engineering, Department of Mechanical Engineering, Cairo, Egypt
3
National Institute of Standards, Force & Material Metrology Laboratory, Giza, Egypt
* Corresponding author: eng.mohammedhamdi@yahoo.com
Received:
3
February
2020
Accepted:
24
September
2020
This paper presents a developed design and construction to improve the performance and increasing the density measuring capability of the previous Hydrostatic Weighing Apparatus (HWA-NIS) at the National Institute of Standards (NIS) up to 20 kg. The previous (HWA-NIS) has been constructed up to 10 kg on 2014. The 2-Positions mass handler in the previous (HWA) was developed with 4-Positions pentagon shape to be able to make handling for individual masses in a group at once, when transferring the traceability from the primary standard “the Silicon Sphere” to the standard masses in the density scale weighing process. The weighing pan in the previous (HWA) was developed with four suspension wires with a diameter of 0.3 mm each, leads to reduce the surface tension affect on the measurement uncertainty by factor four times. The density of the standard masses in the range from 2 kg up to 20 kg were measured with an improved expanded uncertainty from 0.150 kg/m3 to 0.078 kg/m3 respectively due to reducing the effect of surface tension via the developed design of the weighing pan.
Key words: Mass metrology / masses / volume and density / hydrostatic weighing apparatus / solid density uncertainty
© M. Hamdy et al., published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.