Open Access
Int. J. Metrol. Qual. Eng.
Volume 12, 2021
Article Number 15
Number of page(s) 9
Published online 14 June 2021
  1. A. Diez Olivan, J. Del Ser, D. Galar, B. Sierra, Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0., Inform. Fusion 50, 92–111 (2019) [Google Scholar]
  2. L. Ciani, Future trends in IM: Diagnostics, maintenance and condition monitoring for cyber-physical systems, IEEE Instru. Meas. Mag. 22, 48–49 (2019) [Google Scholar]
  3. M. Catelani, L. Ciani, D. Galar, G. Patrizi, Risk assessment of a wind turbine: a new FMECA-Based tool with RPN threshold estimation, IEEE Access 8, 8966244, 20181–20190 (2020) [Google Scholar]
  4. A. Ragab, S. Yacout, M.S. Ouali, H. Osman, Prognostics of multiple failure modes in rotating machinery using a pattern-based classifier and cumulative incidence functions, J. Intell. Manuf. 30, 255–274 (2019) [Google Scholar]
  5. A. Choudhury, Vibration monitoring of rotating electrical machines: vibration monitoring, Advanced condition monitoring and fault diagnosis of electric machines, IGI Global 163–188 (2019) [Google Scholar]
  6. S. Gao, F. Shang, C. Du, Design of multichannel and multihop low-power wide-area network for aircraft vibration monitoring, IEEE Trans. Instrum. Meas. 68, 4887–4895 (2019) [Google Scholar]
  7. S. Gao, X. Zhang, C. Du, Q. Ji, A multichannel low-power wide area network with high-accuracy synchronization ability for machine vibration monitoring, IEEE Internet Things J. 6, 5040–5047 (2019) [Google Scholar]
  8. T. Addabbo, A. Fort, E. Landi, R Moretti, M. Mugnaini, L. Parri, V. Vignoli, A wearable low-cost measurement system for estimation of human exposure to vibrations, in: Proceedings of the IEEE 5th International forum on Research and Technology for Society and Industry (RTSI) , 2019, pp. 442–446 [Google Scholar]
  9. N.I. Hossain, S. Reza, M. Ali, VibNet: application of wireless sensor network for vibration monitoring using ARM, in: Proceedings of the International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST) , 2019 [Google Scholar]
  10. R.W. Supler,Uncertainty error and drift evaluation considerations involving analog to digital upgrades in nuclear power plants, in: Proceedings of the 11th Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies, NPIC and HMIT, Orlando, United States , 9–14 February, 2019, pp. 1275–1283 [Google Scholar]
  11. G. D'Emilia, A. Gaspari, F. Mazzoleni, E. Natale, A. Schiavi, Calibration of tri-axial MEMS accelerometers in the low-frequency range − part 1: comparison among methods, J. Sens. Sens. Syst. 7, 245–257 (2018) [Google Scholar]
  12. B. Xu, Design of metrology equipment running management system based on the internet of things technology, in: Proceedings of the 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI) , 2017, pp. 253–259 [Google Scholar]
  13. A. Carullo, Metrological management of large-scale measuring systems, IEEE Trans. Instrum. Meas. 55, 471–476 (2006) [Google Scholar]
  14. B.D. Hall, An opportunity to enhance the value of metrological traceability in digital systems, in: Proceedings of the II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4. 0 & IoT) , 2019, pp. 16–21 [Google Scholar]
  15. S. Benedikt, T. Bruns, S. Eichstädt, Methods for dynamic calibration and augmentation of digital acceleration MEMS sensors, in: Proceedings of the 19th International Congress of Metrology (CIM2019) , 2019, EDP Sciences [Google Scholar]
  16. W.S. Cheung, Effects of the sample clock of digital-output MEMS accelerometers on vibration amplitude and phase measurements, Metrologia 57, 015008 (2020) [Google Scholar]
  17. T. Addabbo, A. Fort, E. Landi, R. Moretti, M. Mugnaini, L. Parri, V. Vignoli, A Characterization system for bearing condition monitoring sensors, a case study with a low power wireless Triaxial MEMS based sensor, in: Proceedings of the2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT , 2020, pp. 11–15 [Google Scholar]
  18. D. Bismor, Analysis and comparison of vibration signals from internal combustion engine acquired using piezoelectric and MEMS accelerometers, Vib. Phys. Syst. 30, 1–8 (2019) [Google Scholar]
  19. G. D'Emilia, E. Natale, Network of MEMS sensors for condition monitoring of industrial systems: accuracy assessment of features used for diagnosis, in: Proceedings of the 17th IMEKO TC 10 and EUROLAB Virtual Conference: “Global Trends in Testing, Diagnostics & Inspection for 2030” , 20–22 October, 2020 [Google Scholar]
  20. A. Schiavi, G. D'Emilia, A. Prato, A. Gaspari, F. Mazzoleni, E. Natale, Calibration of digital 3-axis MEMS accelerometers: a double-blind «multi-bilateral» comparison, in: Proceedings of the IEEE international Workshop on Metrology for Industry 4.0 and IoT , 2020, pp. 542–547 [Google Scholar]
  21. A. Prato, F. Mazzoleni, A. Schiavi, Traceability of digital 3-axis MEMS accelerometer: simultaneous determination of main and transverse sensitivities in the frequency domain, Metrologia 53, 035013 (2020) [Google Scholar]
  22. G. D'Emilia, A. Gaspari, E. Natale, Measurement uncertainty of contact and non-contact techniques on condition monitoring of complex industrial components, J. Phys. Conf. Ser. 1110, 012005 (2018) [Google Scholar]
  23. G. D'Emilia, A. Gaspari, E. Natale, Measurements for smart manufacturing in an Industry 4.0 scenario; a case-study on a mechatronic system, in: Proceedings of Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2018 , 2018, IEEE, pp. 107–111 [Google Scholar]
  24. A. Choudhary, T. Mian, S. Fatima, Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images, Measurement 176, 109196 (2021) [Google Scholar]
  25. M. Abubakr, M.A. Hassan, G.M. Krolczyk, N. Khanna, H. Hegab, Sensors selection for tool failure detection during machining processes: a simple accurate classification model. CIRP J. Manuf. Sci. Technol. 32, 108–119 (2021) [Google Scholar]
  26. (accessed November 10, 2020) [Google Scholar]
  27. D.C. Montgomery, Statistical quality control , McGraw-Hill, New York, (2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.