Open Access
Int. J. Metrol. Qual. Eng.
Volume 12, 2021
Article Number 17
Number of page(s) 14
Published online 14 July 2021
  1. S.S. Mahapatra, A.K. Sood, Bayesian regularization-based Levenberg-Marquardt neural model combined with BFOA for improving surface finish of FDM processed part, Int. J. Adv. Manuf. Tech. 60, 1223–1235 (2012) [CrossRef] [Google Scholar]
  2. A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Experimental investigation and empirical modelling of FDM process for compressive strength improvement, J. Adv. Res. 3, 81–90 (2012) [Google Scholar]
  3. H.P. Nagarajan, H. Mokhtarian, H. Jafarian, S. Dimassi, S. Bakrani-Balani, A. Hamedi, E. Coatanea, G.G. Wang, K.R. Haapala, Knowledge-based design of artificial neural network topology for additive manufacturing process modeling: a new approach and case study for fused deposition modeling, J. Mech. Des. 141, 1–12 (2019) [Google Scholar]
  4. J. Jiang, G. Hu, X. Li, X. Xu, P. Zheng, J. Stringer, Analysis and prediction of printable bridge length in fused deposition modelling based on back propagation neural network, Virtual Phys. Prototyp. 14, 253–266 (2019) [Google Scholar]
  5. A. Boschetto, V. Giordano, F. Veniali, Surface roughness prediction in fused deposition modelling by neural networks, Int. J. Adv. Manuf. Tech. 67, 2727–2742 (2013) [Google Scholar]
  6. A. Noriega, D. Blanco, B.J. Alvarez, A. Garcia, Dimension accuracy improvement of FDM square cross-section parts using artificial neural networks and an optimization algorithm, Int. J. Adv. Manuf. Tech. 69, 2301–2313 (2013) [Google Scholar]
  7. V. Vijayaraghavan, A. Garg, J.S.L. Lam, B. Panda, S.S. Mahapatra, Process characterisation of 3D-printed FDM components using improved evolutionary computational approach, Int. J. Adv. Manuf. Tech. 78, 781–793 (2015) [Google Scholar]
  8. B.N. Panda, M.V.A.R. Bahubalendruni, B.B. Biswal, A general regression neural network approach for the evaluation of compressive strength of FDM prototypes, Neural. Comput. Appl. 26, 1129–1136 (2015) [Google Scholar]
  9. O. Bayraktar, G. Uzun, R. Çakiroğlu, A. Guldas, Experimental study on the 3D-printed plastic parts and predicting the mechanical properties using artificial neural networks, Polym. Adv. Technol. 28, 1044–1051 (2016) [Google Scholar]
  10. E. Vahabli, S. Rahmati, Application of an RBF neural network for FDM parts' surface roughness prediction for enhancing surface quality, Int. J. Precis. 17, 1589–1603 (2016) [Google Scholar]
  11. D. Wu, Y. Wei, J. Terpenny, Predictive modelling of surface roughness in fused deposition modelling using data fusion, Int. J. Prod. Res. 57, 3992–4006 (2019) [Google Scholar]
  12. Z. Li, Z. Zhang, J. Shi, D. Wu, Prediction of surface roughness in extrusion-based additive manufacturing with machine learning, Robot. Comput. Integr. Manuf. 57, 488–495 (2019) [Google Scholar]
  13. J. Jiang, G. Hu, X. Li, X. Xu, P. Zheng, J. Stringer, Analysis and prediction of printable bridge length in fused deposition modelling based on back propagation neural network, Virtual Phys. Prototyp. 14, 253–266 (2019) [Google Scholar]
  14. J.M. Barrios, P.E. Romero, Decision tree methods for predicting surface roughness in fused deposition modeling parts, Materials 12, 2574 (2019) [Google Scholar]
  15. D. Yadav, D. Chhabra, R.K. Garg, A. Ahlawat, A. Phogat, Optimization of FDM 3D printing process parameters for multi-material using artificial neural network, Mater. Today 21, 1583–1591 (2020) [Google Scholar]
  16. E.G. Plaza, P.J.N. Lopez, M.A.C. Torija, J.M.C. Munoz, Analysis of PLA geometric properties processed by FFF additive manufacturing: effects of process parameters and plate-extruder precision motion, Polymer 11, 1581 (2019) [Google Scholar]
  17. L. Yang, S. Li, Y. Li, M. Yang, Q. Yuan, Experimental investigations for optimizing the extrusion parameters on FDM PLA printed parts, J. Mater. Eng. Perform. 28, 169–182 (2018) [Google Scholar]
  18. K. Kandananond, Optimization of fused filament fabrication system by response surface method, Int. J. Metrol. Qual. Eng. 11, 4 (2020) [EDP Sciences] [Google Scholar]
  19. A. Peng, X. Xiao, R. Yue, Process parameter optimization for fused deposition modelling using response surface methodology combined with fuzzy inference system, Int. J. Adv. Manuf. Tech. 73, 87–100 (2014) [Google Scholar]
  20. O.A. Mohamed, S.H. Masood, J.L. Bhowmik, Influence of processing parameters on creep and recovery behavior of FDM manufactured part using definitive screening design and ANN, Rapid Prototyp. J. 23, 998–1010 (2017) [Google Scholar]
  21. M. Pérez, G. Medina-Sánchez, A. García-Collado, M. Gupta, D. Carou, Surface quality enhancement of fused deposition modeling (FDM) printed samples based on the selection of critical printing parameters, Materials 11, 1382 (2018) [Google Scholar]
  22. G.E.P. Box, D.W. Behnken, Some new three level designs for the study of quantitative variables, Technometrics 2, 455–475 (1960) [CrossRef] [Google Scholar]
  23. M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP algorithm, in: Proceedings of the IEEE International Conference on Neural Networks, San Francisco , 1993, pp. 586– 591 [Google Scholar]
  24. F. Gunther, S. Fritsch. Neuralnet: training of neural networks, R J. 2, 30–38 (2010) [Google Scholar]
  25. A.D. Anastasiadis, G.D. Magoulas, M.N. Vrahatis, New globally convergent training scheme based on the resilient propagation algorithm, Neurocomputing 64, 253–270 (2005) [Google Scholar]
  26. T.M. Bailey, Convergence of Rprop and variants, Neurocomputing 159, 90–95 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.