Open Access
Int. J. Metrol. Qual. Eng.
Volume 10, 2019
Article Number 15
Number of page(s) 12
Published online 25 November 2019
  1. BIPM, Annual Report on Time Activities, 12th edn., 10–14, 2017 [Google Scholar]
  2. N. Hinkley, J.A. Sherman, N.B. Phillips et al., An atomic clock with 10−18 instability, Science 341 , 1215–1218 (2013) [Google Scholar]
  3. T.L. Nicholson, S.L. Campbell, R.B. Hutson et al., Systematic evaluation of an atomic clock at 2×10−18 total uncertainty, Nat. Commun. 6 , 6896 (2015) [PubMed] [Google Scholar]
  4. C.W. Chou, D.B. Hume, J.C. Koelemeij et al., Frequency comparison of two high-accuracy Al+ optical clocks, Phys. Rev. Lett. 104 , 070802 (2010) [CrossRef] [PubMed] [Google Scholar]
  5. N. Huntemann, C. Sanner, B. Lipphardt et al., Single-ion atomic clock with 3×10−18 systematic uncertainty, Phys. Rev. Lett. 116 , 063001 (2016) [CrossRef] [PubMed] [Google Scholar]
  6. Y. Koyama, The use of very long baseline interferometry for time and frequency metrology, MAPAN − J. Metrol. Soc. India 27 , 23–30 (2012) [Google Scholar]
  7. J. Ray, K. Senior, Geodetic techniques for time and frequency comparisons using GPS phase and code measurements, Metrologia 42 , 215–232 (2005) [Google Scholar]
  8. F. Nakagawa, J. Amagai, R. Tabuchi, Y. Takahashi, M. Nakamura, S. Tsuchiya, S. Hama, Carrier-phase TWSTFT experiments using the ETS-VIII satellite, Metrologia 50 , 200–207 (2013) [Google Scholar]
  9. O. Lopez, A. Haboucha, B. Chanteau, C. Chardonnet, A. Amy-Klein, G. Santarelli, Ultra-stable long distance optical frequency distribution using the internet fiber network, Opt. Express 20 , 23518 (2012) [PubMed] [Google Scholar]
  10. S. Droste, F. Ozimek, T. Udem, K. Predehl, T.W. Hänsch, H. Schnatz, G. Grosche, R. Holzwarth, Optical frequency transfer over a single-span1840 km fiber link. Phys. Rev. Lett. 111 , 110801 (2013) [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  11. M.P. Hess, J. Kehrer, M. Kufner, S. Durand, G. Heijc, H. Frühauf, L. Cacciapuoti, R. Much, R. Nasca, The ACES MWL status and test results, Proceedings of the Joint IEEE International Frequency Control Symposium and European Frequency and Time Forum, San Francisco, CA, USA, 2–5 May 2011, 26–33 [Google Scholar]
  12. E. Samain et al., T2L2: time transfer by laser link, in Proceedings of the 15th Workshop on Laser Ranging, Canberra, Australia, 15–20 October 2006 (2006) [Google Scholar]
  13. H. Schuh, D. Behrend, VLBI: A fascinating technique for geodesy and astrometry, J. Geodyn. 61 , 68–80 (2012) [Google Scholar]
  14. C. Rieck, R. Haas, K. Jaldehag, J. Johansson, VLBI time-transfer using CONT08 data, in EFTF-2010 24th European Frequency and Time Forum, Noordwijk (2010), pp. 1–8 [Google Scholar]
  15. H. Takiguchi, T. Hobiger, A. Ishii, R. Ichikawa, Y. Koyama, Comparison with GPS time transfer and VLBI time transfer, IVS NICTTDC News 28 , 10–15 (2007) [Google Scholar]
  16. C. Rieck, R. Haas, P. Jarlemark, K. Jaldehag, VLBI frequency transfer using CONT11, European Frequency and Time Forum (EFTF) (2012), pp. 163–165 [CrossRef] [Google Scholar]
  17. F. Takahashi, T. Kondo, Y. Takahashi, Y. Koyama, Very long baseline interferometer (IOS Press, Tokyo, Japan, 2000) [Google Scholar]
  18. T.A. Clark, B.E. Corey, J.L. Davis, G. Elgered, T.A. Herring, H.F. Hinteregger, C.A. Knight, J.I. Levine, G. Lundqvist, C. Ma, E.F. Nesman, R.B. Phillips, A.E.E. Rogers, B.O. Rönnäng, J.W. Ryan, B.R. Schupler, D.B. Shaffer, I.I. Shapiro, N.R. Vandenberg, J.C. Webber, A.R. Whitney, Precision geodesy using the Mark-III very long baseline interferometer system, IEEE Trans. Geosci. Remote Sens. GE-23 , 438–449 (1985) [Google Scholar]
  19. W. Cannon, Overview of VLBI, in International VLBI Service for Geodesy and Astrometry 1999 Annual Report. NASA/TP-1999-209243, edited by N. Vandenberg, K. Baver (1999), pp. 13–17 [Google Scholar]
  20. O.J. Sovers, J.L. Fanselow, C.S. Jacobs, Astrometry and geodesy with radio interferometry: experiments, models, results, Rev. Mod. Phys. 70 , 1393–1454 (1998) [Google Scholar]
  21. T. Hobiger, C. Rieck et al., Combining GPS and VLBI for inter-continental frequency transfer. Metrologia 52, 251–261 (2015) [Google Scholar]
  22. H. Takiguchi, Y. Koyama, R. Ichikawa et al., Comparison study of VLBI and GPS carrier phase frequency transfer using IVS and IGS data, IVS NICT-TDC News 29 , 23–27 (2008) [Google Scholar]
  23. D.W. Allan, M.A. Weiss, Accurate time and frequency transfer during common-view of a GPS satellite, in Proceedings of the 1980 IEEE Frequency Control Symposium, Philadelphia, PA, USA, 28–30 May , 1980 (1980), pp 334–356 [Google Scholar]
  24. P. Defraigne, G. Petit, CGGTTS-Version 2E: an extended standard for GNSS Time Transfer, Metrologia 52 , G1 (2015) [Google Scholar]
  25. Z. Jiang, W. Lewandowski, Use of GLONASS for UTC time transfer, Metrologia 49 , 57–61 (2012) [Google Scholar]
  26. Y.P. Gao, Z.M. Wang, Y. Qi, Application of GPS CV technology to JATC, J. Time Freq. 2 , 81–86 (2004) [Google Scholar]
  27. P.L. Wang, H.J. Cheng, S.J. Lin, Y.P. Gao, Design and implementation of precise time service system based on GNSS CV, J. Time Freq. 35 , 137–142 (2012) [Google Scholar]
  28. P.L. Wang, G.L. Wang, H.B. Cai, N. Liu, H.B. Li, Y.P. Gao, The study of time comparison method based on VLBI, Chin. J. Sci. Instrum. (2019), in press [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.