Open Access
Int. J. Metrol. Qual. Eng.
Volume 7, Number 2, 2016
Article Number 204
Number of page(s) 10
Published online 18 May 2016
  1. C.-F. Bisu, M. Cherif, A. Gerard, J.-Y. K’Nevez, Dynamic behaviour analysis for a six axis industrial machining robot, Proc ICASAAM, September, 2011. Bucharest, Romania (Vol. abs/1201.4443) (2012) [Google Scholar]
  2. J. Jamshidi, A. Kayani, P. Iravani, P.G. Maropoulos, M.D. Summmers, Manufacturing and assembly automation by integrated metrology systems for aircraft wing fabrication, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 224, 25–36 (2010) [CrossRef] [Google Scholar]
  3. M.H. To, A Framework for flexible integration in robotics and its applications for calibration and error compensation (Cranfield, Cranfield, 2012) [Google Scholar]
  4. A. Weber, Virtual metrology and your technology watch list: ten things you should know about this emerging technology, Future Fab International 22, 52–54 (2007) [Google Scholar]
  5. S. Lott, A robotic revolution, Aerospace Manufacturing Magazine (2011) [Google Scholar]
  6. B. Siciliano, O. Khatib, Handbook of Robotics (Springer, 2008) [Google Scholar]
  7. J.L. Garbini, R.A. Saunders, J.E. Jorgensen, In-process drilled hole inspection for aerospace applications, Precis. Eng. 13, 125–134 (1991) [CrossRef] [Google Scholar]
  8. L.D. Peterson, S.J. Bullock, J.D. Hinkle, M.R. Hachkowski, P.A. Warren, M.S. Lake, Micron accurate deployable antenna and sensor technology for new-millennium-era spacecraft, in IEEE Proceeding of Aerospace Applications Conference, 1996, Vol. 1, pp. 129–139 [Google Scholar]
  9. M.S. Kumar, S.M. Kannan, Optimum manufacturing tolerance to selective assembly technique for different assembly specifications by using genetic algorithm, Int. J. Adv. Manuf. Technol. 32, 591–598 (2007) [Google Scholar]
  10. R.S. Bunker, The effects of manufacturing tolerances on gas turbine cooling, J. Turbomachinery 131, 041011–041018 (2009) [CrossRef] [Google Scholar]
  11. J. Liu, X. Pan, G. Wang, A. Chen, Design and accuracy analysis of pneumatic gauging for form error of spool valve inner hole, Flow Meas. Inst. 23, 26–32 (2012) [CrossRef] [Google Scholar]
  12. H. Kihlman, Affordable Automation for Airframe Assembly (Linköping University, 2005) [Google Scholar]
  13. W. Cuypers, N. Van Gestel, A. Voet, J.P. Kruth, J. Mingneau, P. Bleys, Optical measurement techniques for mobile and large-scale dimensional metrology, Opt. Lasers Eng. 47, 292–300 (2009) [CrossRef] [Google Scholar]
  14. H. Nouira, R.H. Bergmans, A. Küng, H. Piree, R. Henselmans, H.A.M. Spaan, Ultra-high precision CMMs and their associated tactile or/and optical scanning probes, Int. J. Metrology Quality Eng. 5, DOI: 10.1051/ijmqe/2014009 (2015) [Google Scholar]
  15. Nikon, Optical CMM Technology,˙EU/Products/Portable-Measuring/Optical-CMM/K-Series-Optical-CMM/(brochure), accessed 11/01/2016 (2016) [Google Scholar]
  16. Leica, Geosystem, Laser Tracker Systems,˙69045.htm, accessed 11/01/2016 (2016) [Google Scholar]
  17. J.E. Muelaner, O.C. Martin, P.G. Maropoulos, Achieving Low Cost and High Quality Aero Structure Assembly through Integrated Digital Metrology Systems, Procedia CIRP 7, 688–693 (2013) [CrossRef] [Google Scholar]
  18. N. Jayaweera, P. Webb, Metrology-assisted robotic processing of aerospace applications, Robot. Comput. Integrated Manuf. 23 (2010) [Google Scholar]
  19. G. Bone, D. Capson, Vision-guided fixtureless assembly of automotive components, Robot. Comput. Integr. Manuf. 19, 79–87 (2003) [CrossRef] [Google Scholar]
  20. S. Eastwood, P. Webb, Compensation of thermal deformation of a hybrid parallel kinematic machine (Pergamon Press, Inc., 2009), Vol. 25 [Google Scholar]
  21. Y. Bai, H. Zhuang, On the comparison of bilinear, cubic spline, and fuzzy interpolation Techniques for Robotic Position Measurements, IEEE Trans. Instrum. Meas. 54 (2005) [Google Scholar]
  22. N. Calder, New dawns for robotics, Aerospace Manufacturing (2011) [Google Scholar]
  23. Q. Yang, C. Butler, A 3-D noncontact trigger probe for coordinate measuring machines, Measurement 17, 39–44 (1996) [CrossRef] [Google Scholar]
  24. L.-M. Song, D.-P. Li, M.-C. Qin, Z.-Y. Li, Y.-l. Chang, J.-T. Xi, Research on high-precision hole measurement based on robot vision method, Optoelectron. Lett. 10, 378–382 (2014) [CrossRef] [Google Scholar]
  25. Y. Zhao, P. Li, C. Wang, Z. Pu, A novel fiber-optic sensor used for small internal curved surface measurement, Sens. Actuat. A 86, 211–215 (2000) [CrossRef] [Google Scholar]
  26. M. Yu-zhen, Y. Yong-Xin, W. Xin-hua, Diameter measuring technique based on capacitive probe for deep hole or oblique hole monitoring, Measurement 47, 42–44 (2014) [CrossRef] [Google Scholar]
  27. G. Hui, Z. Xinglin, L. Shugui, S. Changku, Z. Yizhong, Measurement system of wall thickness of two adjacent blind holes, Chinese J. Sci. Instrum. (2003) [Google Scholar]
  28. X. Hongji, W. Hongping, C. Guohua, D. Hongchang, A non-contact measurement method on size shape and position of deep cavity blind hole, in International Conference on Mechatronics and Automation (ICMA), 2003, pp. 546–550 [Google Scholar]
  29. E.J. Chern, Non-contact eddy current hole eccentricity and diamatere measurement (1998) [Google Scholar]
  30. R.L. Price, W.G. Jerome, Basic Confocal Microscopy (Springer, 2011) [Google Scholar]
  31. Micro-Epsilon, Measurement Product Guide (2016) [Google Scholar]
  32. P.M. Conn, Techniques in confocal microscopy (Elsevier, 2010) [Google Scholar]
  33. A. Knuttel, Low-Coherence interferometric device for light-optical scanning of an object. United States (2005) [Google Scholar]
  34. P. Godbillon, B. Lutat, A. Knuttel, Scanning sensor system for noncontact optical scanning of object surfaces (2010) [Google Scholar]
  35. Z. Warlick, and P. Katz, Errors in non-contact sensor measurements due to misalignment and scanning methodology, Int. J. Metrolol. Quality Eng. 6 (2015) [Google Scholar]
  36. D. Axinte, Miniaturised Robotic systems for holistic in-situ Repair and maintenance works in restrained and hazardous environments (University of Notttingham, Nottingham, 2013) [Google Scholar]
  37. F. Marinello, M. Balcon, P. Schiavuta, S. Carmignato, E. Savio, Thermal drift study on different commercial scanning probe microscopes during the initial warming-up phase, Meas. Sci. Technol. 22, 094016 (2011) [CrossRef] [Google Scholar]
  38. ANSI/ISA-75.25.01, Test Procedure for Control Valve Response Measurement from Step Inputs (2000) [Google Scholar]
  39. F. Girardin, Étude de l’usinage de matériaux performants et surveillance de l’usinage, L’Institut National de Sciences Appliquées de Lyon (2010) [Google Scholar]
  40. D.A. Axinte, N. Gindy, K. Fox, I. Unanue, Process monitoring to assist the workpiece surface quality in machining, Int. J. Machine Tools Manuf. 44, 1091–1108 (2004) [Google Scholar]
  41. R. Schmitt, M. Peterek, S. Quinders, Concept of a virtual metrology frame based on absolute interferometry for multi robotic assembly, in Precision Assembly Technologies and Systems, IFIP Advances in Information and Communication Technology (Springer, Berlin Heidelberg, 2014), Vol. 435, pp. 79–86 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.