Open Access
Int. J. Metrol. Qual. Eng.
Volume 2, Number 1, 2011
Page(s) 25 - 30
Published online 29 June 2011
  1. G.C. Holst, Imaging system performance based upon / d”, Opt. Eng. 46, 103204 (2007) [CrossRef] [Google Scholar]
  2. S.K. Park, R. Schowengerdt, M. Kaczynski, Modulation-transfer-function analysis for sampled image systems, Appl. Opt. 23, 2572–2582 (1984) [CrossRef] [PubMed] [Google Scholar]
  3. A.D. Ducharme, S.P. Temple, Improved aperture for modulation transfer function measurement of detector arrays beyond the Nyquist frequency, Opt. Eng. 47, 093601 (2008) [CrossRef] [Google Scholar]
  4. J.C. Feltz, M.A. Karim, Modulation transfer function of charge-coupled devices, Appl. Opt. 29, 717–722 (1990) [CrossRef] [PubMed] [Google Scholar]
  5. D.N. Sitter Jr., J.S. Goddard, R.K. Ferrell, Method for the measurement of the modulation transfer function of sampled imaging systems from bar-target patterns, Appl. Opt. 34, 746–751 (1995) [CrossRef] [PubMed] [Google Scholar]
  6. N. Guérineau, J. Primot, M. Tauvy, M. Caes, Modulation transfer function measurement of an infrared focal plane array by use of the self-imaging property of a canted periodic target, Appl. Opt. 38, 631–637 (1999) [CrossRef] [PubMed] [Google Scholar]
  7. M. Marchywka, D.G. Socker, Modulation transfer function measurement techniques for small-pixel detectors, Appl. Opt. 31, 7198–7213 (1992) [CrossRef] [PubMed] [Google Scholar]
  8. J.E. Greivenkamp, A.E. Lowman, Modulation transfer function measurements of sparse-array sensors using a self-calibrating fringe pattern, Appl. Opt. 33, 5029–5036 (1994) [CrossRef] [PubMed] [Google Scholar]
  9. H. Kubota, H. Ohzu, Method of Measurement of Response Function by Means of Random Chart, J. Opt. Soc. Am. 47, 666–667 (1957) [CrossRef] [Google Scholar]
  10. G.D. Boreman, E.L. Dereniak, Method for measuring modulation transfer function of charge-coupled devices using laser speckle, Opt. Eng. 25, 148–150 (1986) [Google Scholar]
  11. G.D. Boreman, Y. Sun, A.B. James, Generation of laser speckle with an integrating sphere, Opt. Eng. 29, 339–342 (1990) [CrossRef] [Google Scholar]
  12. A.M. Pozo, A. Ferrero, M. Rubiño, J. Campos, A. Pons, Improvements for determining the modulation transfer function of charge-coupled devices by the speckle method, Opt. Express 14, 5928–5936 (2006) [CrossRef] [PubMed] [Google Scholar]
  13. A. Daniels, G.D. Boreman, A.D. Ducharme, E. Sapir, Random transparency targets for modulation transfer function measurement in the visible and infrared regions, Opt. Eng. 34, 860–868 (1995) [CrossRef] [Google Scholar]
  14. G.D. Boreman, Fourier spectrum techniques for characterization of spatial noise in imaging arrays, Opt. Eng. 26, 985–991 (1987) [Google Scholar]
  15. X. Chen, N. George, G. Agranov, C. Liu, B. Gravelle, Sensor modulation transfer function measurement using band-limited laser speckle, Opt. Express 16, 20047–20059 (2008) [CrossRef] [PubMed] [Google Scholar]
  16. A.M. Pozo, M. Rubiño, Comparative analysis of techniques for measuring the modulation transfer functions of charge-coupled devices based on the generation of laser speckle, Appl. Opt. 44, 1543–1547 (2005) [CrossRef] [PubMed] [Google Scholar]
  17. M. Sensiper, G.D. Boreman, A.D. Ducharme, D. Snyder, Modulation transfer function testing of detector arrays using narrowband laser speckle, Opt. Eng. 32, 395–400 (1993) [CrossRef] [Google Scholar]
  18. J.R. Janesick, Scientific Charge-Coupled Devices, SPIE Optical (Engineering Press, Washington, USA, 2001) [Google Scholar]
  19. W. Astar, New power-efficient optical filter for detector array modulation transfer function measurement by laser speckle, Opt. Eng. 35, 2761–2679 (1996) [CrossRef] [Google Scholar]
  20. O. Yadid-Pecht, Geometrical modulation transfer function for different pixel active area shapes, Opt. Eng. 39, 859–865 (2000) [CrossRef] [Google Scholar]
  21. A.M. Pozo, M. Rubiño, Optical characterization of ophthalmic lenses by means of modulation transfer function determination from a laser speckle pattern, Appl. Opt. 44, 7744–7748 (2005) [CrossRef] [PubMed] [Google Scholar]
  22. A.D. Ducharme, Microlens diffusers for efficient laser speckle generation, Opt. Express 15, 14573–14579 (2007) [CrossRef] [PubMed] [Google Scholar]
  23. J.W. Goodman, Statical properties of laser speckle and related phenomena, in Laser Speckle and Related Phenomena, Topics in Applied Physics, edited by J.C. Dainty (Springer-Verlag, Berlin, 1984), Vol. 9, pp. 35–40 [Google Scholar]
  24. L.I. Goldfischer, Autocorrelation function and power spectral density of laser-produced speckle patterns, J. Opt. Soc. Am. 55, 247–253 (1965) [CrossRef] [Google Scholar]
  25. A. Nasibov, A. Kholmatov, H. Nasibov, F. Hacizade, The influence of CCD pixel binning option to its modulation transfer function, Presented at SPIE-2010, Optics, Photonics, and Digital Technologies for Multimedia Applications (Brussels, Belgium 2010), pp. 7723, 77231A–77231A-8 [Google Scholar]
  26. A. Fernández-Oliveras, A.M. Pozo, M. Rubiño, Analysis of the modulation transfer function spectral variation in different detector arrays by means of speckle patterns, J. Imaging Sci. Technol. 53, 031101 (2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.