Issue |
Int. J. Metrol. Qual. Eng.
Volume 12, 2021
|
|
---|---|---|
Article Number | 1 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/ijmqe/2020018 | |
Published online | 15 January 2021 |
Research Article
Research on steering control performance of electric forklift with steer by wire
Department of Electrical Engineering, Binzhou University, Binzhou, Shandong 256600, PR China
* Corresponding author: 201310017@bzu.edu.cn
Received:
22
October
2020
Accepted:
26
December
2020
Forklift plays an important role in cargo handling in the warehouse; therefore, it is necessary to ensure the stability of the forklift when turning to guarantee the safety of transportation. In this study, the particle swarm optimization (PSO) algorithm was improved by a genetic algorithm (GA), and the parameters of the proportion, integration, and differentiation (PID) controller were calculated using the improved algorithm for forklift steering control. Then simulation experiments were carried out using MATLAB. The results showed that the convergence speed of the improved PSO algorithm was faster than that of GA, and its adaptive value after convergence stability was significantly lower than that of the PSO algorithm; whether it was low-speed or high-speed steering, the three algorithms responded to the steering signal quickly; the yaw velocity and sideslip angle of the forklift steering under the improved PSO algorithm were more suitable for stable steering, and the increase of the steering speed would increase the yaw velocity. The novelty of this paper is that the traditional PSO algorithm is improved by GA and the particle swarm jumps out of the locally optimal solution through the crossover and mutation operations.
Key words: Forklift / four-wheel steering / particle swarm optimization algorithm / genetic algorithm
© C. Feng, Hosted by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.